MATH 2030 3.00MW – Elementary Probability Course Notes Part V: Independence of Random Variables, Law of Large Numbers, Central Limit Theorem, Poisson distribution Geometric & Exponential distributions

Tom Salisbury - salt@yorku.ca

York University, Dept. of Mathematics and Statistics Original version April 2010. Thanks are due to E. Brettler, V. Michkine, and R. Shieh for many corrections

January 19, 2018

Independence

- Random variables X, Y are independent if P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) for all choices of A, B ⊂ ℝ.
- ► So knowing the value of X gives no information about Y.
- We'll generally stick to 2 r.v., but everything generalizes to more. Eg. X₁,..., X_n are *independent* if P(X_i ∈ A_i, i = 1,..., n) = ∏ⁿ_{i=1} P(X_i ∈ A_i).
- If X, Y are discrete then independence \Leftrightarrow P(X = x, Y = y) = P(X = x)P(Y = y) for every x, y.
 - [Pf: For \Rightarrow take $A = \{x\}$, $B = \{y\}$. For \Leftarrow , $P(X \in A)P(Y \in B) = (\sum_{x \in A} P(X = x))(\sum_{y \in B} P(Y = y))$ $= \sum_{x \in A, y \in B} P(X = x)P(Y = y)$ $= \sum_{x \in A, y \in B} P(X = x, Y = y) = P(X \in A, Y \in B)$]
- There's a similar result in the continuous case, but it uses joint densities, something we aren't going to get into.

Independence

Some more basic properties of independence:

▶ X, Y independent
$$\Rightarrow$$
 g(X), h(Y) independent, $\forall g, h$.
[Proof: Fix A, B and let $C = \{x \mid g(x) \in A\}$,
 $D = \{y \mid h(y) \in B\}$. Then
 $P(g(X) \in C, h(Y) \in D) = P(X \in C, Y \in D)$
 $= P(X \in C)P(Y \in D) = P(g(X) \in A)P(h(Y) \in B)$.]

 X, Y independent ⇒ E[XY] = E[X]E[Y] (assuming X, Y, XY are integrable).

[Proof: We'll only do the discrete case. $E[X]E[Y] = \left(\sum_{x} xP(X = x)\right) \left(\sum_{y} yP(Y = y)\right)$ $= \sum_{x,y} xyP(X = x)P(Y = y) = \sum_{x,y} xyP(X = x, Y = y)$ = E[XY]. To see the latter, we could use that $XY = \sum_{x,y} xy1_{\{X=x,Y=y\}}.$ The latter holds because for any ω , the only term of the sum that isn't = 0 is the one for the x and y such that $X(\omega)Y(\omega) = xy.$]

Independence

 \blacktriangleright X, Y independent \Rightarrow Var[X + Y] = Var[X] + Var[Y] [Proof: Var[X + Y] = $E[(X + Y - E[X + Y])^2]$ $= E\left[\left((X - E[X]) + (Y - E[Y])\right)^{2}\right]$ $= E \left[(X - E[X])^{2} + 2(X - E[X])(Y - E[Y]) + (Y - E[Y])^{2} \right]$ $E[(X - E[X])^{2}] + 2E[(X - E[X])(Y - E[Y])] + E[(Y - E[Y])^{2}]$ claim 2nd term =0, so this = Var[X] + Var[Y]. To see this, note that the factors are independent (a previous property), so by another previous property, it = 2E[X - E[X]]E[Y - E[Y]] = 2(E[X] - E[X])(E[Y] - E[Y]) $= 2 \times 0 \times 0 = 0.1$

Calculating via independence

(modified from what was done in class) **Eg:** Suppose X and Y are independent, X has mean 3 and variance 5, Y has mean -2 and variance 4.

- ▶ Find E[(X + Y)(2X + 3Y + 6)]. Solution: $= 2E[X^2] + 5E[XY] + 3E[Y^2] + 6E[X] + 6E[Y]$. But $E[X^2] = Var[X] + E[X]^2 = 5 + 3^2 = 14$, $E[Y]^2 = Var[Y] + E[Y]^2 = 4 + (-2)^2 = 8$, and E[XY] = E[X]E[Y] = 3(-2) = -6 by independence. Putting it all together we get an answer of 28.
- ► Find Var[XY]

Solution: $= E[(XY)^2] - E[XY]^2 = E[X^2Y^2] - (E[X]E[Y])^2$ = $E[X^2]E[Y^2] - E[X]^2E[Y]^2$ by independence. Using the numbers calculated above, $= 14 \times 8 - 3^2(-2)^2 = 76$.

Law of Large Numbers (LOLN)

- Let X₁, X₂,..., X_n be independent, with identical distributions (we say they're *IID*), and mean µ. Let S_n = X₁ + · · · + X_n.
- The Law of Large Numbers says, heuristically, that $S_n/n \approx \mu$.
- Simple reason: If $\sigma^2 = \text{Var}[X_1]$ then $\text{Var}[S_n/n] = n\sigma^2/n^2 = \sigma^2/n \to 0$, so S_n/n is close to its mean, which is μ .
- ► This explains the long-run-average interpretation of expectations, which says that if X_k denotes our winnings from the *k*'th round of some game, then in the long run, the amount we win per round (= S_n/n) is μ .
- ▶ It also explains our frequentist interpretation of probabilities: If A_k is an event arising from the k'th repeated trial of some experiment, then the relative frequency with which the A's occur is $\frac{1}{n} \sum 1_{A_k}$. And this is $\approx E[1_{A_1}] = P(A_1)$.

LOLN

- All those conclusions come out of the heuristic $S_n/n \approx \mu$. But mathematically, we need a more precise formulation. This'll be the idea that the probability of finding S_n/n "significantly" deviating from μ gets small as n gets large.
- ▶ Thm (LOLN) $X_1, X_2, ...$ IID integrable r.v., mean μ . Then $\forall \epsilon > 0$, $P\left(\left|\frac{S_n}{n} - \mu\right| > \epsilon\right) \to 0$ as $n \to \infty$.
- ▶ We prove this assuming $\sigma^2 = \operatorname{Var}[X] < \infty$. The proof uses **Chebyshev's inequality:** Assume $E[Y] = \mu$, a > 0. Then $P(|Y \mu| \ge a) \le \frac{\operatorname{Var}[Y]}{a^2}$.
- ► Variant: Let $\sigma^2 = \text{Var}[Y]$. Then $P(|Y \mu| \ge b\sigma) \le \frac{1}{b^2}$.

► Proof of LOLN:

$$P\left(\left|\frac{S_n}{n} - \mu\right| > \epsilon\right) \leq \frac{\operatorname{Var}[S_n/n]}{\epsilon^2} = \frac{\operatorname{Var}[S_n]}{n^2\epsilon^2} = \frac{n\sigma^2}{n^2\epsilon^2} \to 0.$$

Chebyshev's ineq.

- The point of Chebyshev is that it gives a universal bound on the probabilities of deviations from the mean – you don't need to know much about the distribution of Y in order to apply it.
- Something this general won't necessarily give a very tight bound in special cases. For example, deviation probabilities for the normal distribution decay much faster than what Chebyshev gives.
- Proof of Chebyshev:

If $|Y - \mu| \ge a$ then $\frac{(Y - \mu)^2}{a^2} \ge 1$. So $\mathbb{1}_{\{|Y - \mu| \ge a\}} \le \frac{(Y - \mu)^2}{a^2}$. Chebyshev now follows by taking expectations.,

Markov's inequality

If $X \ge 0$ and $a > 0 \Rightarrow P(X \ge a) \le \frac{E[X]}{a}$.

- Like Chebyshev, this gives a bound on probabilities, but now for prob's of large values, not values far from the mean
- The bound only depends on the mean of X (but also applies only to positive random variables)

Proof: I'll do it only in the case where there's a density f. Then P(X ≥ a) = ∫_a[∞] f(x) dx ≤ ∫_a[∞] x/a f(x) dx (as x/a ≥ 1 when x ≥ a). ≤ ∫₀[∞] x/a f(x) dx = E[X]/a (as X ≥ 0).
Eg: If X ≥ 0 has mean 2, then Markov ⇒ P(X ≥ 4) ≤ 1/2.
If we add the information that Var[X] = 1, then we can

improve this: Chebyshev $\Rightarrow P(X \ge 4) \le P(|X - 2| \ge 2) \le \frac{1}{4}$.

• And if $X \sim Bin(4, \frac{1}{2})$ then actually $P(X \ge 4) = \frac{1}{16}$.

Central Limit Theorem

- ▶ LOLN says that if $S_n = X_1 + \cdots + X_n$, where the X_i are IID with mean μ then $S_n \approx n\mu$. ie $S_n = n\mu$ + error.
- The Central Limit Theorem refines this, and says that if Var[X] = σ² then the error is approximately N(0, nσ²).
 ie. S_n ≈ nμ + σ√nZ, where Z ~ N(0, 1).
- This is the heuristic meaning of the CLT. To make it more precise, we solve for Z and apply the heuristic to calculating probabilities.
- ► Thm (CLT): Let $X_1, X_2, ...$ be IID, with mean μ and variance σ^2 . Then $P\left(\frac{S_n - n\mu}{\sigma\sqrt{n}} \le z\right) \rightarrow P(Z \le z) = \Phi(z)$ as $n \to \infty$.
- If \exists time at the end of the course, we'll come back to the pf.
- Basically says that for independent sums of many small r.v. we can approximate S_n by a normal r.v. having the same mean and variance as S_n.

Central Limit Theorem

- Eg: If the X_k are Bernoulli (ie indicators) then this μ = p and σ² = p(1 − p). We get S_n ~ Bin(n, p) and the CLT says exactly the same thing as our Normal approx. to the Binomial.
- ▶ Eg: In Statistics, one uses frequently that statistics (like $\bar{X}_n = S_n/n$) are asymptotically normal. The CLT is what proves this.
- ▶ Eg: $Y = \text{sum of } 20 \text{ independent } \text{Uniform}([0, 1]) \text{ r.v. Find } P(Y \ge 8).$

It is a lot of work to find the exact prob (we did the sum of 2 earlier). A normal approx. is much easier. The uniform mean is $\frac{1}{2}$ [done earlier] and the variance is $\frac{1}{12}$ [done earlier]. So E[Y] = 10 and $Var[Y] = \frac{20}{12} = \frac{5}{3}$. Therefore $P(Y \ge 8) = P\left(\frac{Y-10}{\sqrt{5/3}} \ge \frac{8-10}{\sqrt{5/3}}\right) \approx P(Z \ge -1.5492) = 0.9393$ Note that there is no continuity correction here, as Y already has a density.

Central Limit Theorem

Eg: \bar{X} = the sample mean of 10 indep. r.v. with distribution $X_k = \begin{cases} 4, & \text{with prob. } \frac{1}{2} \\ -4, & \text{with prob. } \frac{1}{4}. \text{ Find } P(\bar{X} \le 2). \\ 0, & \text{with prob. } \frac{1}{4}. \end{cases}$ By CLT, S_{10} is approx. normal and therefore so is \bar{X} . $E[X_k] = \frac{4}{2} - \frac{4}{4} + \frac{0}{4} = 1$ and $\operatorname{Var}[X_k] = \left(\frac{4^2}{2} + \frac{(-4)^2}{4} + \frac{0^2}{4}\right) - 1^2 = 11.$ So $E[S_{10}] = 10$ and $Var[S_{10}] = 110$. So $E[\bar{X}] = 1$ and $Var[\bar{X}] = 1.1$; $ar{X}$ is discrete, so we do a continuity correction. The space between neighbouring values of S_{10} is 4, so that between neighbouring values of \bar{X} is 0.4; We split the difference, to apply the normal approx at non-sensitive values. $P(\bar{X} \leq 2) = P(\bar{X} \leq 2.2)$ $=P\left(\frac{\bar{X}-1}{\sqrt{11}} \le \frac{2.2-1}{\sqrt{11}}\right) \approx P(Z \le 1.1442) = 0.8737$

Poisson Distribution

> X has a Poisson Distribution with parameter $\lambda > 0$ means that its possible values are 0, 1, 2, ... (ie any non-negative integer) and $P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$, k = 0, 1, 2, ...Why is this a legitimate distribution? Need $\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = 1.$ This follows since the Taylor series for e^{λ} is $\sum \lambda^k / k!$ $\blacktriangleright E[X] = \lambda$ [Proof: $E[X] = \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda}$. The term with k = 0 is 0 so drop it. Then cancel k with k! to give (k-1)! and switch to an index i = k - 1. ie. $E[X] = \sum_{i=0}^{\infty} \frac{\lambda^{i+1}}{i!} e^{-\lambda} = \lambda \sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!} e^{-\lambda} = \lambda \times 1$]

Poisson Distribution

► Var[X] =
$$\lambda$$
.
[Proof: $E[X^2] = \sum_{k=0}^{\infty} k^2 \frac{\lambda^k}{k!} e^{-\lambda}$
 $= \sum_{k=0}^{\infty} k(k-1) \frac{\lambda^k}{k!} e^{-\lambda} + \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda}$], because
 $k^2 = k(k-1) + k$. The 2nd sum is the mean, λ . We drop the
1st 2 terms from the first sum [as they =0], cancel $k(k-1)$
with $k!$ [leaving $(k-2)!$], and change the index to $j = k-2$.
This gives $E[X^2] = \lambda^2 \sum_{j=0}^{\infty} \frac{\lambda^j}{j!} e^{-\lambda} + \lambda = \lambda^2 \times 1 + \lambda$.
Therefore $Var[X] = (\lambda^2 + \lambda) - \lambda^2 = \lambda$.]

- Why is the Poisson distribution important? It arises when modelling rare events.
- ► An example of this is the **Poisson approximation to the Binomial**.

(ロ)、(型)、(E)、(E)、 E) の(の)

Poisson approximation to Binomial

- When n is large, and X ~ Bin(n, p) then X ≈ normal. Provided p is NOT ≈ 0 or ≈ 1.
- If p ≈ 0 the normal approximation is bad, and we turn to a Poisson approximation instead; n large, p = λ/n ⇒ X ≈ Poisson(λ).
- ▶ More precisely, if $X \sim Bin(n, p_n)$ and $np_n \to \lambda$ as $n \to \infty$ then $P(X = k) \to \frac{\lambda^k}{k!} e^{-\lambda}$ for every k. [Proof: P(X = k) $= \binom{n}{k} p_n^k (1 - p_n)^{n-k} = \frac{n(n-1)\cdots(n-k+1)}{k!} p_n^k (1 - p_n)^{n-k}$ $= \frac{n(n-1)\cdots(n-k+1)}{n^k} \cdot \frac{(np_n)^k}{k!} \cdot (1 - \frac{np_n}{n})^n \cdot (1 - p_n)^{-k}$; Let $n \to \infty$. The 1st part = $(1)(1 - \frac{1}{n})\cdots(1 - \frac{k-1}{n}) \to 1$ since each factor does. The 2nd part $\to \frac{\lambda^k}{k!}$; The 3rd part $\to e^{-\lambda}$ (take logs and use l'Hospital's rule); The 4th part $\to 1$. This does it.]

Poisson sums

- If X ~ Bin(m, p) and Y ~ Bin(n, p) and X, Y are independent, then X + Y ~ Bin(n + m, p). Because the number of successes in n + m trials can be broken up as the number in the first n trials, plus the number in the remaining m.
- This suggests that sums of independent normals are normal, and also sums of independent Poisson's are Poisson. We'll verify the latter.
- ▶ If $X_1 \sim \text{Poisson}(\lambda_1)$ and $X_2 \sim \text{Poisson}(\lambda_2)$ are independent, then $X_1 + X_2 \sim \text{Poisson}(\lambda_1 + \lambda_2)$. [Proof: By additivity and independence, $P(X_1 + X_2 = n) = \sum_{k=0}^{n} P(X_1 = k, X_2 = n - k)$ $= \sum_{k=0}^{n} P(X_1 = k) P(X_2 = n - k) = \sum_{k=0}^{n} \frac{\lambda_1^k e^{-\lambda_1}}{k!} \cdot \frac{\lambda_2^{n-k} e^{-\lambda_2}}{(n-k)!}$ $= \frac{1}{n!} e^{-(\lambda_1 + \lambda_2)} \sum_{k=0}^{n} {n \choose k} \lambda_1^k \lambda_2^{n-k} = \frac{(\lambda_1 + \lambda_2)^n}{n!} e^{-(\lambda_1 + \lambda_2)}$, by the binomial theorem. This proves it.]

Poisson scatter

- Let S be a set with a notion of the "size" |A| of its subsets A (eg length, if S is 1-dimensional, area if S is 2-dimensional, etc.). A **Poisson scatter** is a random number N of points chosen from S such that for some λ,
 - No two points can coincide.
 - The number of points in disjoint sets A and B are indep.
 - The mean number of points in any $A \subset S$ is $\lambda |A|$
- In this case, N must be Poisson $(\lambda |S|)$.
- ▶ To see this divide *S* into *n* disjoint pieces A_k , each with the same probability p_n of containing a point. By independence, the number of A_k containing points is Bin (n, p_n) . Because points can't coincide, this number $\uparrow N$ as $n \to \infty$. By the mean condition, p_n is asymptotically $\lambda |S|/n$. So the result follows from the Poisson limit theorem.
- Is consistent with sums of independent Poisson being Poisson.

Poisson scatter

- Eg: Gives a reasonable model of:
 - traffic fatalities in Toronto in a month;
 - earthquakes in B.C. in a year;

Eg: When a car is painted it has, on average, 1 defect per $10m^2$ (eg bubbles, dirt). Assuming that defects occur independently of each other, what is the probability that a car with area $4m^2$ has at least 2 defects

The Poisson scatter properties hold. So the total number of defects N has a Poisson distribution. We're given that the average number per m² is λ = 1/10 = 0.1; So E[N] = 4λ = 0.4; Therefore P(N ≥ 2) = 1 - P(N = 0) - P(N = 1) = 1 - e^{-0.4} - 0.4 × e^{-0.4} = 0.0616

Geometric distribution

Under construction

- ▶ Geometric Distribution on {1, 2, 3, ...}
- ▶ Geometric Distribution on {0,1,2,...}
- Models time to 1st success (or 1st failure)

- Mean and Variance
- **Eg:** Flip a coin, wait for 1st Head.
- **Eg:** Craps (dice game)

Exponential distribution

Under construction

- Exponential distribution: density
- Used in actuarial science (lifetimes), queueing theory (service times), reliability theory (failure times), etc.
- Survival probabilities, $\lambda = exponential decay rate.$
- mean and variance
- memoryless property
- constant hazard rate
- [described more general hazard rates, ie ageing, but you're not responsible for this]

Exponential distribution

Under construction

- ▶ Eg: A person age 65 has an expected remaining lifetime of 20 years (ie to age 85). What's the probability they live to age at least 90?
- ► Eg: We measure radioactive decay from a lump of uranium ore, and find that it takes on average 10 minutes till the first decay. What's the probability of a decay in the first 5 minutes?

Exponential and Poisson

- The Poisson and Exponential are related. Let arrival times be distributed on [0,∞) according to a Poisson scatter with rate λ. Let N_t be the number of arrivals before time t. Then N_t is Poisson(λt), and from that we can get that the time T₁ of the first arrival is Exponential(λ).
- To see this, observe that
 P(T₁ > t) = P(no arrivals in [0, t]) = P(N_t = 0) = e^{-λt}.

 From this we get that T₁ has an exponential cdf, and so an exponential density.
- ► More generally, if T_k is the time between the k − 1st and kth arrivals, then the T_k are independent Exponential(λ).
- Let S_k be the time of the kth arrival, so S₁ = T₁,
 S₂ = T₁ + T₂, S₃ = T₁ + T₂ + T₃, etc. We can work out the density for S_k. It gives us an example of what's called a *Gamma* distribution. So sums of independent exponentials (with the same λ) are Gamma.

Gamma

For example, P(S₂ > t) = P(at most 1 arrival in [0, t]) = P(N_t = 0) + P(N_t = 1) = (1 + \lambda t)e^{-\lambda t}. So the cdf of S₂ is F(s) = {0, t < 0 1 - (1 + \lambda t)e^{-\lambda t}, t \ge 0.

This gives the density f(s) = {0, t < 0 \lambda^2 te^{-\lambda t}, t > 0.

In general, a Gamma density has the form

In general, a Gamma density has the form
$$f(s) = \begin{cases} 0, & t < 0\\ C(\alpha, \beta)t^{\alpha-1}e^{-t/\beta}, & t > 0. \end{cases}$$

for parameters α and β . Here C is a constant that makes this integrate to 1.

• The sum of k independent exponentials is then Gamma, with $\alpha = k$ and $\beta = 1/\lambda$.

Negative Binomial

- Another example of a Gamma distribution is the Chi-squared distribution, from statistics. Now α = 1/2. [To see this, do exercise 10b of §4.4]
- In the discrete setting one can do similar things: Carry out independent trials and let N_k be the time of the kth success. One can calculate its distribution, called the *Negative binomial*.
- One can show that N_k is also the sum of k independent Geometric r.v.
- ▶ $P(N_k = n) = P(n$ th trial is S, & k 1 S's in 1st n 1 trials) = $\binom{n-1}{k-1}(1-p)^{n-k}p^k$, n = k, k+1, ...

[Note: You are not responsible for the Gamma or Negative Binomial distributions]

Discrete joint distributions

The joint distribution of a pair of r.v. X, Y is a table of values P(X = x, Y = y). Use it to:

- Calculate expectations
 E[g(X, Y)] = ∑_{x,y} g(x, y)P(X = x, Y = y).
 [Proof. g(X, Y) = ∑_{x,y} g(x, y)1_{X=x,Y=y}. To see this,
 substitute ω. The LHS is g(X(ω), Y(ω)). All terms on the
 RHS = 0 except the one with x = X(ω) and y = Y(ω). And
 that gives g(x, y) = g(X(ω), Y(ω)). Now take expectations.]
- Verify independence.
 ia is P(X = x = X)
 - ie. is P(X = x, Y = y) = P(X = x)P(Y = y)?
- Calculate marginal distributions P(X = x) and P(Y = y).
 ie. sum over rows or columns, to get
 P(X = x) = ∑_y P(X = x, Y = y) and
 P(Y = y) = ∑_x P(X = x, Y = y).

Discrete joint distributions

- Calculate conditional distributions $P(Y = y | X = x) = \frac{P(X=x, Y=y)}{P(X=x)}.$
- Find the covariance Cov(X, Y) = E[(X − E[X])(Y − E[Y])] between X and Y.
- Find the correlation $\rho(X, Y)$ between X and Y. That is, find $\rho(X, Y) = \frac{\text{Cov}(X,Y)}{\text{SD}[X] \cdot \text{SD}[Y]}$.
- We'll see that −1 ≤ ρ ≤ 1, and that ρ measures the extent to which there is a *linear relationship* between X and Y: ρ = 0 means they're *uncorrelated*; there is no linear relationship between them. ρ = 1 means they're perfectly positively correlated; there is a perfect linear relationship between them (with positive slope). ρ = −1 means they're perfectly negatively correlated; there is a perfect linear relationship between them (with negative slope). Other ρ's reflect a partial linear relationship with varying degrees of strength.

Covariance

Properties of covariance:

► Var[X] = Cov(X, X). [Pf: By definition]

- ► X, Y independent \Rightarrow Cov $(X, Y) = 0 \Rightarrow \rho(X, Y) = 0$. [Pf: $= E[X - E[X]] \cdot E[Y - E[Y]]$ by indep. This $= 0 \times 0$.]
- Var[X + Y] = Var[X] + Var[Y] + 2Cov(X, Y). [Pf: = E[((X+Y)-E[X+Y])²] = E[((X-E[X])+(Y-E[Y]))²]. Now expand the square and match up terms.] This is consistent with our earlier observation that independence ⇒ Var of sum = sum of Var.
- ► Cov(X, Y) = E[XY] E[X]E[Y] [Pf: Expand, so = E[XY - XE[Y] - YE[X] + E[X]E[Y]] = E[XY] - E[X]E[Y] - E[X]E[Y] + E[X]E[Y], and just cancel the last 2 terms.]

Correlation

Properties of correlation:

- ► $-1 \leq \rho(X, Y) \leq 1.$

[Pf: Let μ_X , σ_X , μ_Y , σ_Y be the mean and S.D. of X and Y. Then $0 \leq E\left[\left(\frac{X-\mu_X}{\sigma_X} - \frac{Y-\mu_Y}{\sigma_Y}\right)^2\right] = \frac{\operatorname{Var}(X)}{\sigma_X^2} + \frac{\operatorname{Var}(Y)}{\sigma_Y^2} - 2\frac{\operatorname{Cov}(X,Y)}{\sigma_X\sigma_Y}$ $= 1 + 1 - 2\rho(X, Y)$. So $2\rho \leq 2$, which shows that $\rho(X, Y) \leq 1$. The only way we could have $\rho = 1$ is if the above expectation = 0, which implies that $\frac{X-\mu_X}{\sigma_X} = \frac{Y-\mu_Y}{\sigma_Y}$, a linear relationship. The same argument but with $E\left[\left(\frac{X-\mu_X}{\sigma_X} + \frac{Y-\mu_Y}{\sigma_Y}\right)^2\right]$ shows $\rho \geq -1$.]

Example

Adding up each column, we get that the marginal distribution

of X is
$$\begin{array}{c|cccc} x & -1 & 0 & 1 \\ \hline P(X = x) & \frac{2}{7} & \frac{3}{7} & \frac{2}{7} \end{array}$$

Example (cont'd)

- Adding up each row gives the marginal distribution for Y, which is the same as that of X.
- Therefore $E[X] = (-1) \times \frac{2}{7} + 0 \times \frac{3}{7} + 1 \times \frac{2}{7} = 0$. Likewise E[Y] = 0.
- So Cov(X, Y) = E[XY] E[X]E[Y] = ²/₇ 0 = ²/₇. The fact that this ≠ 0 also tells us that X and Y aren't independent.
- $E[X^2] = \frac{2}{7} + 0 + \frac{2}{7} = \frac{4}{7}$ and E[X] = 0, so $Var[X] = \frac{4}{7}$. Likewise for Y.

• So
$$\rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}[X]\operatorname{Var}[Y]}} = \frac{2/7}{4/7} = \frac{1}{2}.$$

Therefore the r.v. X and Y are positively correlated, but not perfectly so.

Example (cont'd)

- ► $E[XY] = \frac{2}{3}$, $Var[X] = \frac{2}{3} = Var[Y]$, so $Cov(X, Y) = \frac{2/3}{\sqrt{(2/3)(2/3)}} = 1$. In other words, now X and Y are perfectly correlated.
- ► In fact, in this case Y = X so there is indeed a linear relation between them.

• More generally, if Y = aX + b then $\rho = 1$ when a > 0 and $\rho = -1$ when a < 0.