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Independence

I Random variables X ,Y are independent if
P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B)
for all choices of A,B ⊂ R.

I So knowing the value of X gives no information about Y .

I We’ll generally stick to 2 r.v., but everything generalizes to
more. Eg. X1, . . . ,Xn are independent if
P(Xi ∈ Ai , i = 1, . . . , n) =

∏n
i=1 P(Xi ∈ Ai ).

I If X ,Y are discrete then independence ⇔
P(X = x ,Y = y) = P(X = x)P(Y = y) for every x , y .

[Pf: For ⇒ take A = {x}, B = {y}. For ⇐,
P(X ∈ A)P(Y ∈ B) = (

∑
x∈A P(X = x))(

∑
y∈B P(Y = y))

=
∑

x∈A,y∈B P(X = x)P(Y = y)
=
∑

x∈A,y∈B P(X = x ,Y = y) = P(X ∈ A,Y ∈ B)]

I There’s a similar result in the continuous case, but it uses
joint densities, something we aren’t going to get into.



Independence

Some more basic properties of independence:

I X ,Y independent ⇒ g(X ), h(Y ) independent, ∀g , h.

[Proof: Fix A, B and let C = {x | g(x) ∈ A},
D = {y | h(y) ∈ B}. Then
P(g(X ) ∈ C , h(Y ) ∈ D) = P(X ∈ C ,Y ∈ D)
= P(X ∈ C )P(Y ∈ D) = P(g(X ) ∈ A)P(h(Y ) ∈ B).]

I X ,Y independent ⇒ E [XY ] = E [X ]E [Y ]
(assuming X , Y , XY are integrable).

[Proof: We’ll only do the discrete case.

E [X ]E [Y ] =
(∑

x xP(X = x)
)(∑

y yP(Y = y)
)

=
∑

x ,y xyP(X = x)P(Y = y) =
∑

x ,y xyP(X = x ,Y = y)
= E [XY ]. To see the latter, we could use that
XY =

∑
x ,y xy1{X=x ,Y=y}. The latter holds because for any

ω, the only term of the sum that isn’t = 0 is the one for the x
and y such that X (ω)Y (ω) = xy .]



Independence

I X ,Y independent ⇒ Var[X + Y ] = Var[X ] + Var[Y ]

[Proof: Var[X + Y ] = E [(X + Y − E [X + Y ])2]

= E
[(

(X − E [X ]) + (Y − E [Y ])
)2]

= E
[
(X − E [X ])2 + 2(X − E [X ])(Y − E [Y ]) + (Y − E [Y ])2

]
=
E [(X−E [X ])2]+2E [(X−E [X ])(Y −E [Y ])]+E [(Y −E [Y ])2]I

claim 2nd term =0, so this = Var[X ] + Var[Y ].
To see this, note that the factors are independent (a previous
property), so by another previous property, it
= 2E [X −E [X ]]E [Y −E [Y ]] = 2(E [X ]−E [X ])(E [Y ]−E [Y ])
= 2× 0× 0 = 0.]



Calculating via independence

(modified from what was done in class)
Eg: Suppose X and Y are independent, X has mean 3 and
variance 5, Y has mean -2 and variance 4.

I Find E [(X + Y )(2X + 3Y + 6)].

Solution: = 2E [X 2] + 5E [XY ] + 3E [Y 2] + 6E [X ] + 6E [Y ].
But E [X 2] = Var[X ] + E [X ]2 = 5 + 32 = 14,
E [Y ]2 = Var[Y ] + E [Y ]2 = 4 + (−2)2 = 8, and
E [XY ] = E [X ]E [Y ] = 3(−2) = −6 by independence.
Putting it all together we get an answer of 28.

I Find Var[XY ]

Solution: = E [(XY )2]− E [XY ]2 = E [X 2Y 2]− (E [X ]E [Y ])2

= E [X 2]E [Y 2]− E [X ]2E [Y ]2 by independence. Using the
numbers calculated above, = 14× 8− 32(−2)2 = 76.



Law of Large Numbers (LOLN)

I Let X1,X2, . . . ,Xn be independent, with identical distributions
(we say they’re IID), and mean µ. Let Sn = X1 + · · ·+ Xn.

I The Law of Large Numbers says, heuristically, that Sn/n ≈ µ.

I Simple reason: If σ2 = Var[X1] then
Var[Sn/n] = nσ2/n2 = σ2/n→ 0,
so Sn/n is close to its mean, which is µ.

I This explains the long-run-average interpretation of
expectations, which says that if Xk denotes our winnings from
the k ’th round of some game, then in the long run, the
amount we win per round (= Sn/n) is µ.

I It also explains our frequentist interpretation of probabilities:
If Ak is an event arising from the k ’th repeated trial of some
experiment, then the relative frequency with which the A’s
occur is 1

n

∑
1Ak

. And this is ≈ E [1A1 ] = P(A1).



LOLN

I All those conclusions come out of the heuristic Sn/n ≈ µ. But
mathematically, we need a more precise formulation. This’ll
be the idea that the probability of finding Sn/n “significantly”
deviating from µ gets small as n gets large.

I Thm (LOLN) X1,X2, . . . IID integrable r.v., mean µ.

Then ∀ε > 0, P
(∣∣Sn

n − µ
∣∣ > ε

)
→ 0 as n→∞.

I We prove this assuming σ2 = Var[X ] <∞. The proof uses
Chebyshev’s inequality: Assume E [Y ] = µ, a > 0.

Then P
(∣∣Y − µ∣∣ ≥ a

)
≤ Var[Y ]

a2 .

I Variant: Let σ2 = Var[Y ]. Then P
(∣∣Y − µ∣∣ ≥ bσ

)
≤ 1

b2 .

I Proof of LOLN:
P
(∣∣Sn

n − µ
∣∣ > ε

)
≤ Var[Sn/n]

ε2 = Var[Sn]
n2ε2 = nσ2

n2ε2 = σ2

nε2 → 0.



Chebyshev’s ineq.

I The point of Chebyshev is that it gives a universal bound on
the probabilities of deviations from the mean – you don’t need
to know much about the distribution of Y in order to apply it.

I Something this general won’t necessarily give a very tight
bound in special cases. For example, deviation probabilities for
the normal distribution decay much faster than what
Chebyshev gives.

I Proof of Chebyshev:

If |Y − µ| ≥ a then (Y−µ)2

a2 ≥ 1. So 1{|Y−µ|≥a} ≤
(Y−µ)2

a2 .
Chebyshev now follows by taking expectations.,



Markov’s inequality

If X ≥ 0 and a > 0 ⇒ P(X ≥ a) ≤ E [X ]

a
.

I Like Chebyshev, this gives a bound on probabilities, but now
for prob’s of large values, not values far from the mean

I The bound only depends on the mean of X (but also applies
only to positive random variables)

I Proof: I’ll do it only in the case where there’s a density f .
Then P(X ≥ a) =

∫∞
a f (x) dx

≤
∫∞
a

x
a f (x) dx (as x

a ≥ 1 when x ≥ a).

≤
∫∞

0
x
a f (x) dx = E [X ]/a (as X ≥ 0).

I Eg: If X ≥ 0 has mean 2, then Markov ⇒ P(X ≥ 4) ≤ 1
2 .

I If we add the information that Var[X ] = 1, then we can
improve this: Chebyshev ⇒ P(X ≥ 4) ≤ P(|X − 2| ≥ 2) ≤ 1

4 .

I And if X ∼ Bin(4, 1
2 ) then actually P(X ≥ 4) = 1

16 .



Central Limit Theorem

I LOLN says that if Sn = X1 + · · ·+ Xn, where the Xi are IID
with mean µ then Sn ≈ nµ. ie Sn = nµ+ error.

I The Central Limit Theorem refines this, and says that if
Var[X ] = σ2 then the error is approximately N(0, nσ2).
ie. Sn ≈ nµ+ σ

√
nZ , where Z ∼ N(0, 1).

I This is the heuristic meaning of the CLT. To make it more
precise, we solve for Z and apply the heuristic to calculating
probabilities.

I Thm (CLT): Let X1,X2, . . . be IID, with mean µ and
variance σ2. Then

P
(Sn − nµ

σ
√
n
≤ z)→ P(Z ≤ z) = Φ(z) as n→∞.

I If ∃ time at the end of the course, we’ll come back to the pf.

I Basically says that for independent sums of many small r.v.
we can approximate Sn by a normal r.v. having the same
mean and variance as Sn.



Central Limit Theorem

I Eg: If the Xk are Bernoulli (ie indicators) then this µ = p and
σ2 = p(1− p). We get Sn ∼ Bin(n, p) and the CLT says
exactly the same thing as our Normal approx. to the Binomial.

I Eg: In Statistics, one uses frequently that statistics (like
X̄n = Sn/n) are asymptotically normal. The CLT is what
proves this.

I Eg: Y = sum of 20 independent Uniform([0, 1]) r.v. Find
P(Y ≥ 8).

It is a lot of work to find the exact prob (we did the sum of 2
earlier). A normal approx. is much easier. The uniform mean
is 1

2 [done earlier] and the variance is 1
12 [done earlier]. So

E [Y ] = 10 and Var[Y ] = 20
12 = 5

3 . Therefore

P(Y ≥ 8) = P
(
Y−10√

5/3
≥ 8−10√

5/3

)
≈ P(Z ≥ −1.5492) = 0.9393

Note that there is no continuity correction here, as Y already
has a density.



Central Limit Theorem

Eg: X̄ = the sample mean of 10 indep. r.v. with distribution

Xk =


4, with prob. 1

2

−4, with prob. 1
4

0, with prob. 1
4

. Find P(X̄ ≤ 2).

By CLT, S10 is approx. normal and therefore so is X̄ .
E [Xk ] = 4

2 −
4
4 + 0

4 = 1 and

Var[Xk ] =
(

42

2 + (−4)2

4 + 02

4

)
− 12 = 11. So E [S10] = 10 and

Var[S10] = 110. So E [X̄ ] = 1 and Var[X̄ ] = 1.1;
X̄ is discrete, so we do a continuity correction. The space between
neighbouring values of S10 is 4, so that between neighbouring
values of X̄ is 0.4; We split the difference, to apply the normal
approx at non-sensitive values. P(X̄ ≤ 2) = P(X̄ ≤ 2.2)

= P
(
X̄−1√

1.1
≤ 2.2−1√

1.1

)
≈ P(Z ≤ 1.1442) = 0.8737



Poisson Distribution

I X has a Poisson Distribution with parameter λ > 0 means
that its possible values are 0, 1, 2, . . . (ie any non-negative

integer) and P(X = k) =
λk

k!
e−λ, k = 0, 1, 2, . . .

I Why is this a legitimate distribution?
Need

∑∞
k=0

λk

k! e
−λ = 1.

This follows since the Taylor series for eλ is
∑
λk/k!

I E [X ] = λ

[Proof: E [X ] =
∑∞

k=0 k
λk

k! e
−λ. The term with k = 0 is 0 so

drop it. Then cancel k with k! to give (k − 1)! and switch to
an index j = k − 1.
ie. E [X ] =

∑∞
j=0

λj+1

j! e−λ = λ
∑∞

j=0
λj

j! e
−λ = λ× 1]



Poisson Distribution

I Var[X ] = λ.

[Proof: E [X 2] =
∑∞

k=0 k
2 λk

k! e
−λ

=
∑∞

k=0 k(k − 1)λ
k

k! e
−λ +

∑∞
k=0 k

λk

k! e
−λ], because

k2 = k(k − 1) + k . The 2nd sum is the mean, λ. We drop the
1st 2 terms from the first sum [as they =0], cancel k(k − 1)
with k! [leaving (k − 2)!], and change the index to j = k − 2.

This gives E [X 2] = λ2
∑∞

j=0
λj

j! e
−λ + λ = λ2 × 1 + λ.

Therefore Var[X ] = (λ2 + λ)− λ2 = λ.]

I Why is the Poisson distribution important? It arises when
modelling rare events.

I An example of this is the Poisson approximation to the
Binomial.



Poisson approximation to Binomial

I When n is large, and X ∼ Bin(n, p) then X ≈ normal.
Provided p is NOT ≈ 0 or ≈ 1.

I If p ≈ 0 the normal approximation is bad, and we turn to a
Poisson approximation instead;
n large, p = λ/n ⇒ X ≈ Poisson(λ).

I More precisely, if X ∼ Bin(n, pn) and npn → λ as n→∞
then P(X = k)→ λk

k! e
−λ for every k.

[Proof: P(X = k)

=
(n
k

)
pkn (1− pn)n−k = n(n−1)···(n−k+1)

k! pkn (1− pn)n−k

= n(n−1)···(n−k+1)
nk

· (npn)k

k! ·
(
1− npn

n

)n · (1− pn)−k ; Let n→∞.

The 1st part = (1)(1− 1
n ) · · · (1− k−1

n )→ 1 since each factor

does. The 2nd part → λk

k! ; The 3rd part → e−λ (take logs and
use l’Hospital’s rule); The 4th part → 1. This does it.]



Poisson sums

I If X ∼ Bin(m, p) and Y ∼ Bin(n, p) and X ,Y are
independent, then X + Y ∼ Bin(n + m, p). Because the
number of successes in n + m trials can be broken up as the
number in the first n trials, plus the number in the remaining
m.

I This suggests that sums of independent normals are
normal, and also sums of independent Poisson’s are
Poisson. We’ll verify the latter.

I If X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2) are independent,
then X1 + X2 ∼ Poisson(λ1 + λ2).

[Proof: By additivity and independence,
P(X1 + X2 = n) =

∑n
k=0 P(X1 = k ,X2 = n − k)

=
∑n

k=0 P(X1 = k)P(X2 = n − k) =
∑n

k=0
λk1e

−λ1

k! · λ
n−k
2 e−λ2

(n−k)!

= 1
n!e
−(λ1+λ2)

∑n
k=0

(n
k

)
λk1λ

n−k
2 = (λ1+λ2)n

n! e−(λ1+λ2), by the
binomial theorem. This proves it.]



Poisson scatter

I Let S be a set with a notion of the “size” |A| of its subsets A
(eg length, if S is 1-dimensional, area if S is 2-dimensional,
etc.). A Poisson scatter is a random number N of points
chosen from S such that for some λ,

I No two points can coincide.
I The number of points in disjoint sets A and B are indep.
I The mean number of points in any A ⊂ S is λ|A|

I In this case, N must be Poisson(λ|S |).

I To see this divide S into n disjoint pieces Ak , each with the
same probability pn of containing a point. By independence,
the number of Ak containing points is Bin(n, pn). Because
points can’t coincide, this number ↑ N as n→∞. By the
mean condition, pn is asymptotically λ|S |/n. So the result
follows from the Poisson limit theorem.

I Is consistent with sums of independent Poisson being Poisson.



Poisson scatter

Eg: Gives a reasonable model of:

I traffic fatalities in Toronto in a month;

I earthquakes in B.C. in a year;

Eg: When a car is painted it has, on average, 1 defect per 10m2

(eg bubbles, dirt). Assuming that defects occur independently of
each other, what is the probability that a car with area 4m2 has at
least 2 defects

I The Poisson scatter properties hold. So the total number of
defects N has a Poisson distribution. We’re given that the
average number per m2 is λ = 1

10 = 0.1; So E [N] = 4λ = 0.4;
Therefore P(N ≥ 2) = 1− P(N = 0)− P(N = 1)
= 1− e−0.4 − 0.4× e−0.4 = 0.0616



Geometric distribution

Under construction

I Geometric Distribution on {1, 2, 3, . . . }
I Geometric Distribution on {0, 1, 2, . . . }
I Models time to 1st success (or 1st failure)

I Mean and Variance

I Eg: Flip a coin, wait for 1st Head.

I Eg: Craps (dice game)



Exponential distribution

Under construction

I Exponential distribution: density

I Used in actuarial science (lifetimes), queueing theory (service
times), reliability theory (failure times), etc.

I Survival probabilities, λ = exponential decay rate.

I mean and variance

I memoryless property

I constant hazard rate

I [described more general hazard rates, ie ageing, but you’re not
responsible for this]



Exponential distribution

Under construction

I Eg: A person age 65 has an expected remaining lifetime of 20
years (ie to age 85). What’s the probability they live to age at
least 90?

I Eg: We measure radioactive decay from a lump of uranium
ore, and find that it takes on average 10 minutes till the first
decay. What’s the probability of a decay in the first 5 minutes?



Exponential and Poisson

I The Poisson and Exponential are related. Let arrival times be
distributed on [0,∞) according to a Poisson scatter with rate
λ. Let Nt be the number of arrivals before time t. Then Nt is
Poisson(λt), and from that we can get that the time T1 of
the first arrival is Exponential(λ).

I To see this, observe that
P(T1 > t) = P(no arrivals in [0, t]) = P(Nt = 0) = e−λt .
From this we get that T1 has an exponential cdf, and so an
exponential density.

I More generally, if Tk is the time between the k − 1st and kth
arrivals, then the Tk are independent Exponential(λ).

I Let Sk be the time of the kth arrival, so S1 = T1,
S2 = T1 + T2, S3 = T1 + T2 + T3, etc. We can work out the
density for Sk . It gives us an example of what’s called a
Gamma distribution. So sums of independent exponentials
(with the same λ) are Gamma.



Gamma

I For example, P(S2 > t) = P(at most 1 arrival in [0, t])
= P(Nt = 0) + P(Nt = 1) = (1 + λt)e−λt . So the cdf of S2

is F (s) =

{
0, t < 0

1− (1 + λt)e−λt , t ≥ 0.

I This gives the density f (s) =

{
0, t < 0

λ2te−λt , t > 0.

I In general, a Gamma density has the form

f (s) =

{
0, t < 0

C (α, β)tα−1e−t/β, t > 0.
for parameters α and β. Here C is a constant that makes this
integrate to 1.

I The sum of k independent exponentials is then Gamma, with
α = k and β = 1/λ.



Negative Binomial

I Another example of a Gamma distribution is the Chi-squared
distribution, from statistics. Now α = 1

2 . [To see this, do
exercise 10b of §4.4]

I In the discrete setting one can do similar things: Carry out
independent trials and let Nk be the time of the kth success.
One can calculate its distribution, called the Negative
binomial.

I One can show that Nk is also the sum of k independent
Geometric r.v.

I P(Nk = n) = P(nth trial is S, & k − 1 S’s in 1st n − 1 trials)
=
(n−1
k−1

)
(1− p)n−kpk , n = k, k + 1, . . .

[Note: You are not responsible for the Gamma or Negative
Binomial distributions]



Discrete joint distributions

The joint distribution of a pair of r.v. X , Y is a table of values
P(X = x ,Y = y). Use it to:

I Calculate expectations
E [g(X ,Y )] =

∑
x ,y g(x , y)P(X = x ,Y = y).

[Proof. g(X ,Y ) =
∑

x ,y g(x , y)1{X=x ,Y=y}. To see this,
substitute ω. The LHS is g(X (ω),Y (ω)). All terms on the
RHS = 0 except the one with x = X (ω) and y = Y (ω). And
that gives g(x , y) = g(X (ω),Y (ω)). Now take expectations. ]

I Verify independence.
ie. is P(X = x ,Y = y) = P(X = x)P(Y = y)?

I Calculate marginal distributions P(X = x) and P(Y = y).
ie. sum over rows or columns, to get
P(X = x) =

∑
y P(X = x ,Y = y) and

P(Y = y) =
∑

x P(X = x ,Y = y).



Discrete joint distributions

I Calculate conditional distributions
P(Y = y | X = x) = P(X=x ,Y=y)

P(X=x) .

I Find the covariance Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])]
between X and Y .

I Find the correlation ρ(X ,Y ) between X and Y .

That is, find ρ(X ,Y ) = Cov(X ,Y )
SD[X ]·SD[Y ] .

I We’ll see that −1 ≤ ρ ≤ 1, and that ρ measures the extent to
which there is a linear relationship between X and Y : ρ = 0
means they’re uncorrelated; there is no linear relationship
between them. ρ = 1 means they’re perfectly positively
correlated; there is a perfect linear relationship between them
(with positive slope). ρ = −1 means they’re perfectly
negatively correlated; there is a perfect linear relationship
between them (with negative slope). Other ρ’s reflect a
partial linear relationship with varying degrees of strength.



Covariance

Properties of covariance:

I Var[X ] = Cov(X ,X ). [Pf: By definition]

I X , Y independent ⇒ Cov(X ,Y ) = 0 ⇒ ρ(X ,Y ) = 0.
[Pf: = E [X − E [X ]] · E [Y − E [Y ]] by indep. This = 0× 0.]

I Var[X + Y ] = Var[X ] + Var[Y ] + 2Cov(X ,Y ). [Pf:
= E [((X +Y )−E [X +Y ])2] = E [((X−E [X ])+(Y −E [Y ]))2].
Now expand the square and match up terms.]
This is consistent with our earlier observation that
independence ⇒ Var of sum = sum of Var.

I Cov(X ,Y ) = E [XY ]− E [X ]E [Y ]
[Pf: Expand, so = E [XY − XE [Y ]− YE [X ] + E [X ]E [Y ]] =
E [XY ]− E [X ]E [Y ]− E [X ]E [Y ] + E [X ]E [Y ], and just cancel
the last 2 terms.]



Correlation

Properties of correlation:

I −1 ≤ ρ(X ,Y ) ≤ 1.

I ρ = 1 ⇒ the values of X and Y always like on an upward
sloping line. [They are perfectly positively correlated]

I ρ = −1 ⇒ the values of X and Y always like on a downward
sloping line. [They are perfectly negatively correlated]

[Pf: Let µX , σX , µY , σY be the mean and S.D. of X and Y . Then

0 ≤ E
[
(X−µXσX

− Y−µY
σY

)2] = Var(X )
σ2
X

+ Var(Y )
σ2
Y
− 2 Cov(X ,Y )

σXσY

= 1 + 1− 2ρ(X ,Y ). So 2ρ ≤ 2, which shows that ρ(X ,Y ) ≤ 1.
The only way we could have ρ = 1 is if the above expectation = 0,
which implies that X−µX

σX
= Y−µY

σY
, a linear relationship. The same

argument but with E
[
(X−µXσX

+ Y−µY
σY

)2] shows ρ ≥ −1.]



Example
Eg: Suppose P(X = x ,Y = y) is

-1 0 1 x

1 0 1
7

1
7

0 1
7

1
7

1
7

-1 1
7

1
7 0

y

Then:

I X and Y aren’t independent, since
P(X = −1,Y = 1) = 0 6= P(X = −1)P(Y = 1).

I E [XY ] = (−1)× (−1)× 1
7 + (−1)× 0× 1

7 + (−1)× 1× 0
+0× (−1)× 1

7 + 0× 0× 1
7 + 0× 1× 1

7
+1× (−1)× 0 + 1× 0× 1

7 + 1× 1× 1
7 = 2

7 .

I Adding up each column, we get that the marginal distribution

of X is
x -1 0 1

P(X = x) 2
7

3
7

2
7



Example (cont’d)

I Adding up each row gives the marginal distribution for Y ,
which is the same as that of X .

I Therefore E [X ] = (−1)× 2
7 + 0× 3

7 + 1× 2
7 = 0. Likewise

E [Y ] = 0.

I So Cov(X ,Y ) = E [XY ]− E [X ]E [Y ] = 2
7 − 0 = 2

7 .
The fact that this 6= 0 also tells us that X and Y aren’t
independent.

I E [X 2] = 2
7 + 0 + 2

7 = 4
7 and E [X ] = 0, so Var[X ] = 4

7 .
LIkewise for Y .

I So ρ(X ,Y ) = Cov(X ,Y )√
Var[X ]Var[Y ]

= 2/7
4/7 = 1

2 .

I Therefore the r.v. X and Y are positively correlated, but not
perfectly so.



Example (cont’d)

I If instead, P(X = x ,Y = y) was

-1 0 1 x

1 0 0 1
3

0 0 1
3 0

-1 1
3 0 0

y

Then the same calculations show:

I E [XY ] = 2
3 , Var[X ] = 2

3 = Var[Y ], so

Cov(X ,Y ) = 2/3√
(2/3)(2/3)

= 1.

In other words, now X and Y are perfectly correlated.

I In fact, in this case Y = X so there is indeed a linear relation
between them.

I More generally, if Y = aX + b then ρ = 1 when a > 0 and
ρ = −1 when a < 0.


