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Independence

>

Random variables X, Y are independent if

P(Xe A Y eB)=P(XeAP(Y € B)

for all choices of A, B C R.

So knowing the value of X gives no information about Y.

We'll generally stick to 2 r.v., but everything generalizes to
more. Eg. Xi,..., X, are independent if

P(X,’ S A,', | = 1, ey n) = H7:1 P(X,' S A,').

If X,Y are discrete then independence <

P(X=x,Y =y)=P(X =x)P(Y =y) for every x, y.

[Pf: For = take A = {x}, B={y}. For <,

P(X € A)P(Y € B) = (3oyca P(X = X)) (X, P(Y =)
= erA,yeB P(X =x)P(Y =y)

XEAyEB P X=x,Y=y)=P(X €AY €B)|
There's a similar result in the continuous case, but it uses
Jjoint densities, something we aren’t going to get into.



Independence

Some more basic properties of independence:
» X, Y independent = g(X), h(Y) independent, Vg, h.

[Proof: Fix A, B and let C = {x | g(x) € A},

D ={y | h(y) € B}. Then

P(g(X) e C,h(Y)e D)=P(X e C,Y € D)

=P(X e C)P(Y € D)= P(g(X) € A)P(h(Y) € B) ]

» X, Y independent = E[XY] = E[X]E[Y]
(assuming X, Y, XY are integrable).

[Proof: We'll only do the discrete case.

EIXIEDY] = (X xP(X =) (5, yP(Y =)

= ZXJ xyP(X =x)P(Y =y) = Zx’y xyP(X =x,Y =y)

= E[XY]. To see the latter, we could use that

XY = ZXW xylix—x,y—y}- The latter holds because for any
w, the only term of the sum that isn't = 0 is the one for the x
and y such that X(w)Y(w) = xy.]



Independence

» X, Y independent = Var[X + Y] = Var[X] + Var[Y]
[Proof: Var[X + Y] = E[(X + Y — E[X + Y])?]
= E[((x ~ EXD + (¥ = E[Y])ﬂ
= E[(X — EIX])? +2(X — EIX])(Y — E[Y]) + (¥ — E[V])?]

E[(X = E[X])?]+2E[(X = E[X])(Y = E[YDI+E[(Y — E[Y])?]!
claim 2nd term =0, so this = Var[X] + Var[Y].

To see this, note that the factors are independent (a previous
property), so by another previous property, it

= 2E[X — E[X]|E[Y — E[Y]] = 2(E[X] - E[X])(E[Y] - E[Y])
=2x0x0=0]



Calculating via independence

(modified from what was done in class)
Eg: Suppose X and Y are independent, X has mean 3 and
variance 5, Y has mean -2 and variance 4.
» Find E[(X + Y)(2X +3Y +6)].
Solution: = 2E[X?] +5E[XY] + 3E[Y?] + 6E[X] + 6E[Y].
But E[X?] = Var[X] + E[X]> =5+ 3% = 14,
E[Y]? = Var[Y] + E[Y]? =4 + (—2)?> = 8, and
E[XY] = E[X]E[Y] = 3(—2) = —6 by independence.
Putting it all together we get an answer of 28.
» Find Var[XY]
Solution: = E[(XY)?] — E[XY]? = E[X2Y?] — (E[X]E[Y])?
= E[X?]E[Y?] — E[X]?E[Y]? by independence. Using the
numbers calculated above, = 14 x 8 — 3%(—2)? = 76.



Law of Large Numbers (LOLN)

> Let X3, Xp,..., X, be independent, with identical distributions
(we say they're /ID), and mean p. Let S, = Xy + -+ X,,.

» The Law of Large Numbers says, heuristically, that S,/n ~ p.

» Simple reason: If 02 = Var[Xi] then
Var[S,/n] = no?/n? = 02/n — 0,
so Sp/n is close to its mean, which is p.

» This explains the long-run-average interpretation of
expectations, which says that if X denotes our winnings from
the k'th round of some game, then in the long run, the
amount we win per round (= S,/n) is p.

» It also explains our frequentist interpretation of probabilities:
If Ag is an event arising from the k'th repeated trial of some
experiment, then the relative frequency with which the A's
occuris £ 3714, . And this is = E[1a,] = P(A1).

n



LOLN

All those conclusions come out of the heuristic S,/n ~ p. But
mathematically, we need a more precise formulation. This'll
be the idea that the probability of finding S,/n “significantly”
deviating from u gets small as n gets large.

Thm (LOLN) Xi, Xz, ... |ID integrable r.v., mean p.
Then ve >0, P(

%—,u}>e) — 0 as n — oc.
We prove this assuming o2 = Var[X] < co. The proof uses
Chebyshev’s inequality: Assume E[Y] = pu, a > 0.

Then P(|Y - u| > a) < YY),

Variant: Let 0% = Var[Y]. Then P(|Y — u| > bo) < .
Proof of LOLN:

P< Sn _u‘ N €> < Var[52,,/n] _ Var[Si] _ no? _ o

n2e2 T n2e2 T ne?

— 0.



Chebyshev's ineq.

» The point of Chebyshev is that it gives a universal bound on
the probabilities of deviations from the mean — you don't need
to know much about the distribution of Y in order to apply it.

» Something this general won't necessarily give a very tight
bound in special cases. For example, deviation probabilities for
the normal distribution decay much faster than what
Chebyshev gives.

» Proof of Chebyshev:

IF 1Y — | > athen O > 1 S0 14y 0y < OS2
Chebyshev now follows by taking expectations.,




Markov's inequality

E[X]
P

> Like Chebyshev, this gives a bound on probabilities, but now
for prob’s of large values, not values far from the mean

fX>0anda>0= P(X>a)<

» The bound only depends on the mean of X (but also applies
only to positive random variables)

» Proof: I'll do it only in the case where there's a density f.
Then P(X > a) = [° f(x
§faooxf dx(a5721whenx23).
< JoT £f(x) dx = E[X]/a (as X > 0).

» Eg: If X > 0 has mean 2, then Markov = P(X > 4) < %

> If we add the information that Var[X] = 1, then we can
improve this: Chebyshev = P(X >4) < P(|X — 2y >2)< !

4-
» And if X ~ Bin(4, 3) then actually P(X > 4) =



Central Limit Theorem

>

LOLN says that if S, = X1 + -+ - + X,;, where the X; are [ID
with mean p then S, =~ nu. ie S, = nu + error.

The Central Limit Theorem refines this, and says that if
Var[X] = o2 then the error is approximately N(0, no?).

ie. Sp~ nu+ ov/nZ, where Z ~ N(0,1).

This is the heuristic meaning of the CLT. To make it more
precise, we solve for Z and apply the heuristic to calculating
probabilities.

Thm (CLT): Let X3, Xa,... be lID, with mean x and
variance o2. Then

Sp— nu B
P( oo <z)—> P(Z<z)=®(z)as n— oo.

If 3 time at the end of the course, we'll come back to the pf.

Basically says that for independent sums of many small r.v.
we can approximate S, by a normal r.v. having the same
mean and variance as S,,.



Central Limit Theorem

» Eg: If the Xy are Bernoulli (ie indicators) then this 4 = p and
02 = p(1 — p). We get S, ~ Bin(n, p) and the CLT says
exactly the same thing as our Normal approx. to the Binomial.

» Eg: In Statistics, one uses frequently that statistics (like
X, = Sp/n) are asymptotically normal. The CLT is what
proves this.

» Eg: Y = sum of 20 independent Uniform([0, 1]) r.v. Find
P(Y >8).
It is a lot of work to find the exact prob (we did the sum of 2
earlier). A normal approx. is much easier. The uniform mean
is 1 [done earlier] and the variance is 5 [done earlier]. So
E[Y] =10 and Var[Y] = 23 = 2. Therefore
P(Y 28) = P(YR > & )zPZ>—1.5492 — 0.9303

(28 =Pl 55 = o) = P12 2 )

Note that there is no continuity correction here, as Y already
has a density.




Central Limit Theorem

Eg: X = the sample mean of 10 indep. r.v. with distribution

4, with prob. %
X = { —4, with prob. 1. Find P(X < 2).
0, with prob. %

By CLT, S10 is approx normal and therefore so is X.

E[X«] = 7—7+4—1and

Var[Xe] = (£ + 52 1 @) _ 12— 11. So E[S;0] = 10 and
Var[S10] = 110. So E[X] =1 and Var[X] = 1.1;

X is discrete, so we do a continuity correction. The space between
neighbouring values of Syg is 4, so that between neighbouring
values of X is 0.4; We split the difference, to apply the normal
approx at non-sensitive values. P(X < 2) = P(X < 2.2)

221\ —
p(r < F) ~ P(Z < 1.1442) = 0.8737



Poisson Distribution

» X has a Poisson Distribution with parameter A > 0 means

that its possible values are 0,1,2,... (ie any non-negative
)\k
integer) and P(X = k) = Fe_’\ k=0,1,2,.

» Why is this a Iegitimate distribution?
Need > 77, kl e =1.
This follows since the Taylor series for e* is S A\ /k!
[Proof: E[X] =372, ki‘(—?e"\. The term with k =0 is 0 so
drop it. Then cancel k with k! to give (k — 1)! and switch to
an index j = k — 1.

e, E[X] =Y %0 Yret =AY e = A x1]



Poisson Distribution

» Var[X] = \.
[Proof: E[X?] = 3252 k2Are
= > o k(k— )k,e_’\—l—zk 0kk,e A], because
k? = k(k — 1) + k. The 2nd sum is the mean, . We drop the
1st 2 terms from the first sum [as they =0], cancel k(k — 1)
with k! [leaving (k — 2)!], and change the index to j = k — 2.
This gives E[X?] = \? >0 j‘f e A=A x 1+ A\
Therefore Var[X] = (A2 +\) — A2 = )]

» Why is the Poisson distribution important? It arises when
modelling rare events.

» An example of this is the Poisson approximation to the
Binomial.



Poisson approximation to Binomial

» When nis large, and X ~ Bin(n, p) then X ~ normal.
Provided p is NOT =~ 0 or =~ 1.

> If p =~ 0 the normal approximation is bad, and we turn to a
Poisson approximation instead,;
n large, p = A\/n = X = Poisson(\).

» More precisely, if X Bin(n, pp) and np, — XA as n — oo
then P(X = k) — k, “e for every k.
[Proof: P(X = k)
= (D)p(L — po)=F = A==k pl(1 — p, )k

k

= ooy Anoktl)  (men) . (1 ”P") (1= pn)*; Let n — .
The 1st part = (1)(1 — %) (1= k= 1) — 1 since each factor
does. The 2nd part — i‘(—f The 3rd part — e~ (take logs and
use I'Hospital’s rule); The 4th part — 1. This does it.]




Poisson sums

» If X ~ Bin(m, p) and Y ~ Bin(n, p) and X, Y are
independent, then X 4+ Y ~ Bin(n+ m, p). Because the
number of successes in n 4+ m trials can be broken up as the
number in the first n trials, plus the number in the remaining
m.

» This suggests that sums of independent normals are
normal, and also sums of independent Poisson’s are
Poisson. We'll verify the latter.

» If X1 ~ Poisson(A1) and X, ~ Poisson(\,) are independent,
then X3 + X ~ Poisson(A1 + A2).

[Proof: By additivity and independence,
P(Xl—l-Xg = n) :ZZ:OP(Xl =k, Xp = n—k)

—A1 )\n_ke_>‘2

=2 ko PXa =k)P(Xo=n—k)=3"4_ 0 k' ' 2(n—k)!
_ %e—()\l—i—/\g) ZZ: ( ))\k)\g k _ ()\1+>\2) ()\1—1-)\2), by the
binomial theorem. This proves |t]




Poisson scatter

> Let S be a set with a notion of the “size” |A| of its subsets A
(eg length, if S is 1-dimensional, area if S is 2-dimensional,
etc.). A Poisson scatter is a random number N of points
chosen from S such that for some A,

» No two points can coincide.
» The number of points in disjoint sets A and B are indep.
» The mean number of points in any A C S is A\|A|

> In this case, N must be Poisson(A|S]).

» To see this divide S into n disjoint pieces Ay, each with the
same probability p, of containing a point. By independence,
the number of Ay containing points is Bin(n, p,). Because
points can't coincide, this number T N as n — co. By the
mean condition, p, is asymptotically A|S|/n. So the result
follows from the Poisson limit theorem.

> Is consistent with sums of independent Poisson being Poisson.



Poisson scatter

Eg: Gives a reasonable model of:
» traffic fatalities in Toronto in a month;
» earthquakes in B.C. in a year;

Eg: When a car is painted it has, on average, 1 defect per 10m?
(eg bubbles, dirt). Assuming that defects occur independently of
each other, what is the probability that a car with area 4m? has at
least 2 defects

» The Poisson scatter properties hold. So the total number of
defects N has a Poisson distribution. We're given that the
average number per m? is A = & = 0.1; So E[N] = 4\ = 0.4;
Therefore P(N >2)=1—-P(N=0)—- P(N=1)
=1—-e %% _04xe 9 =0.0616



Geometric distribution

Under construction

>

>

>

Geometric Distribution on {1,2,3,...}
Geometric Distribution on {0,1,2,...}
Models time to 1st success (or 1st failure)
Mean and Variance

Eg: Flip a coin, wait for 1st Head.

Eg: Craps (dice game)



Exponential distribution

Under construction

>

>

Exponential distribution: density

Used in actuarial science (lifetimes), queueing theory (service
times), reliability theory (failure times), etc.

Survival probabilities, A = exponential decay rate.
mean and variance

memoryless property

constant hazard rate

[described more general hazard rates, ie ageing, but you're not
responsible for this]



Exponential distribution

Under construction

» Eg: A person age 65 has an expected remaining lifetime of 20
years (ie to age 85). What's the probability they live to age at
least 907

» Eg: We measure radioactive decay from a lump of uranium
ore, and find that it takes on average 10 minutes till the first
decay. What's the probability of a decay in the first 5 minutes?



Exponential and Poisson

» The Poisson and Exponential are related. Let arrival times be
distributed on [0, c0) according to a Poisson scatter with rate
A. Let N; be the number of arrivals before time t. Then N; is
Poisson(At), and from that we can get that the time T; of
the first arrival is Exponential(\).

» To see this, observe that
P(Ty > t) = P(no arrivals in [0, t]) = P(N; = 0) = e~ .
From this we get that T; has an exponential cdf, and so an
exponential density.

» More generally, if Ty is the time between the k — 1st and kth
arrivals, then the Ty are independent Exponential(\).

» Let S) be the time of the kth arrival, so §; = Ty,
S =T1+ Ty, 5= T1+ T+ T3, etc. We can work out the
density for Si. It gives us an example of what's called a
Gamma distribution. So sums of independent exponentials
(with the same \) are Gamma.



Gamma

» For example, P(S; > t) = P(at most 1 arrival in [0, t])

= P(N; = 0) + P(N; = 1) = (1L + At)e *t. So the cdf of S,
0, t <0
1— (14 At)e ™, t>0.

0, t<0
Nte ™M t>0.
> In general, a Gamma density has the form
f(s) = 0, t<0
C(a,p)t"tet/B t>0.
for parameters o and 3. Here C is a constant that makes this
integrate to 1.

is F(s) =

» This gives the density f(s) = {

» The sum of k independent exponentials is then Gamma, with
a=kand =1/



Negative Binomial

> Another example of a Gamma distribution is the Chi-squared
distribution, from statistics. Now o = % [To see this, do
exercise 10b of §4.4]

> In the discrete setting one can do similar things: Carry out
independent trials and let Ny be the time of the kth success.
One can calculate its distribution, called the Negative
binomial.

» One can show that N is also the sum of k independent
Geometric r.v.

» P(Nx = n) = P(nth trial is S, & k —1 S's in 1st n — 1 trials)
= (1)@ -p)"kpk n=kk+1,...

[Note: You are not responsible for the Gamma or Negative
Binomial distributions]



Discrete joint distributions

The joint distribution of a pair of r.v. X, Y is a table of values
P(X =x,Y =y). Use it to:
» Calculate expectations

Elg(X, V)] =>_s,8(x,y)P(X =x,Y =y).
[Proof. g(X,Y)=>", g(x ¥)l{x=x,y=y}- To see this,
substitute w. The LHS'i |s g(X(w), Y(w)). All terms on the
RHS = 0 except the one with x = X(w) and y = Y(w). And
that gives g(x,y) = g(X(w), Y(w)). Now take expectations. |

» Verify independence.
ie. isPIX=x,Y=y)=P(X=x)P(Y =y)?

» Calculate marginal distributions P(X = x) and P(Y =y).
ie. sum over rows or columns, to get

P(X=x)=>,P(X=x,Y =y) and
P(Y=y)= 2 PX=xY =y)



Discrete joint distributions

» Calculate conditional distributions

P(Y =y | X =x) =BT,

» Find the covariance Cov(X,Y) = E[(X — E[X])(Y — E[Y])]
between X and Y.
» Find the correlation p(X,Y) between X and Y.

That is, find p(X,Y) = %_

> We'll see that —1 < p <1, and that p measures the extent to
which there is a linear relationship between X and Y: p =20
means they're uncorrelated, there is no linear relationship
between them. p = 1 means they're perfectly positively
correlated; there is a perfect linear relationship between them
(with positive slope). p = —1 means they're perfectly
negatively correlated; there is a perfect linear relationship
between them (with negative slope). Other p's reflect a
partial linear relationship with varying degrees of strength.



Covariance

Properties of covariance:

» Var[X] = Cov(X, X). [Pf: By definition]

» X, Y independent = Cov(X,Y)=0= p(X,Y)=0.
[Pf: = E[X — E[X]] - E[Y — E[Y]] by indep. This =0 x 0.]

» Var[X + Y] = Var[X] + Var[Y] + 2Cov(X, Y). [Pf:
= E[(X+Y)—E[X+Y])’] = E[(X—E[X])+(Y - E[Y]))?].
Now expand the square and match up terms.]
This is consistent with our earlier observation that
independence = Var of sum = sum of Var.

» Cov(X,Y) = E[XY]— E[X]E[Y]
[Pf: Expand, so = E[XY — XE[Y] — YE[X] + E[X]E[Y]] =
E[XY]— E[X]E[Y] — E[X]E[Y] + E[X]E[Y], and just cancel
the last 2 terms.]



Correlation

Properties of correlation:
» —1<p(X,Y)<1.
» p =1 = the values of X and Y always like on an upward
sloping line. [They are perfectly positively correlated]
» p = —1 = the values of X and Y always like on a downward
sloping line. [They are perfectly negatively correlated]

[Pf: Let ux, ox, py, oy be the mean and S.D. of X and Y. Then
0< E[(X px Y—uy)z] Var(X) 4 Var(Y) _ pCov(X,Y)

oy OX0Oy
=1+1-2p(X,Y). So2p < 2 which shows that p(X,Y) < 1.
The only way we could have p = 1 is if the above expectation = 0,

which implies that X=£X = Y=LY 5 inear relationship. The same
ox oy

argument but with E[(X;i)’(‘x + %)2] shows p > —1]



Example

Eg: Suppose P(X = x,Y =y)is
I EICIEE
10|31
0 % % % Then:
13 4o
y
» X and Y aren't independent, since
P(X=-1,Y=1)=0#P(X=-1)P(Y =1).
» E[XY]=(— )><( 1)><7 (1)><0><—+(—1)><1><0
+0><(—)><7+0><0><f+0><1><?
FIx (1) x0+1x0x3+1x1x3= %
» Adding up each column, we get that the marginal distribution

X 11011

of X is

B
x
Il

=

~In

312
717




Example (cont'd)

» Adding up each row gives the marginal distribution for Y,
which is the same as that of X.

> Therefore E[X] = (—1) x 240 x 2 + 1 x 2 =0. Likewise

E[Y]=0.

» So Cov(X,Y)=E[XY]—-E[X]E[Y]=5-0=2%
The fact that this # 0 also tells us that X and Y aren't
independent.

» E[X?]=2+0+2=1%and E[X] =0, so Var[X] = 2
Likewise for Y.
__ Cov(X,Y) 2/ _
» So p(X,Y) = Nar[X]Var[y] ~ 47 —
» Therefore the r.v. X and Y are p05|t|vely correlated, but not
perfectly so.



Example (cont'd)

» If instead, P(X = x,Y = y) was
I EI

| x

1
0|03
ollo % 0 Then the same calculations show:
1300
y
» E[XY] =2, Var[X] = % = Var[Y], so
Cov(X,Y) = \/% —1

In other words, now X and Y are perfectly correlated.

» In fact, in this case Y = X so there is indeed a linear relation
between them.

» More generally, if Y = aX + b then p =1 when a > 0 and
p=—1when a<0.



