MATH 2030 3.00MW – Elementary Probability Course Notes Part V: Independence of Random Variables, Law of Large Numbers, Central Limit Theorem, Poisson distribution Geometric & Exponential distributions

Tom Salisbury – salt@yorku.ca

York University, Dept. of Mathematics and Statistics Original version April 2010. Thanks are due to E. Brettler, V. Michkine, and R. Shieh for many corrections

January 19, 2018

KORK ERKER ADE YOUR

Independence

- \triangleright Random variables X, Y are *independent* if $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$ for all choices of $A, B \subset \mathbb{R}$.
- \triangleright So knowing the value of X gives no information about Y.
- \triangleright We'll generally stick to 2 r.v., but everything generalizes to more. Eg. X_1, \ldots, X_n are *independent* if $P(X_i \in A_i, i = 1, ..., n) = \prod_{i=1}^n P(X_i \in A_i).$
- If X, Y are discrete then independence \Leftrightarrow $P(X = x, Y = y) = P(X = x)P(Y = y)$ for every x, y.
	- [Pf: For \Rightarrow take $A = \{x\}$, $B = \{y\}$. For \Leftarrow , $P(X \in A)P(Y \in B) = (\sum_{x \in A} P(X = x))(\sum_{y \in B} P(Y = y))$ $=\sum_{x\in A, y\in B}P(X=x)P(Y=y)$ $=\sum_{x\in A, y\in B} P(X=x, Y=y) = P(X\in A, Y\in B)]$
- \triangleright There's a similar result in the continuous case, but it uses joint densities, something we aren't going to get into.

Independence

Some more basic properties of independence:

- \triangleright X, Y independent \Rightarrow g(X), h(Y) independent, \forall g, h. [Proof: Fix A, B and let $C = \{x \mid g(x) \in A\}$, $D = \{y \mid h(y) \in B\}$. Then $P(g(X) \in C, h(Y) \in D) = P(X \in C, Y \in D)$ $= P(X \in C)P(Y \in D) = P(g(X) \in A)P(h(Y) \in B).$
- \triangleright X, Y independent \Rightarrow $E[XY] = E[X]E[Y]$ (assuming X , Y , XY are integrable).

[Proof: We'll only do the discrete case. $E[X]E[Y] = \left(\sum_{x} xP(X=x)\right)\left(\sum_{y} yP(Y=y)\right)$ $\mathcal{P}=\sum_{x,y} x y P(X=x) P(Y=y) = \sum_{x,y} x y P(X=x, Y=y)$ $E = E[XY]$. To see the latter, we could use that $XY=\sum_{\mathsf{x},\mathsf{y}}\mathsf{x}\mathsf{y}1_{\{X=\mathsf{x},\mathsf{Y}=\mathsf{y}\}}.$ The latter holds because for any ω , the only term of the sum that isn't $= 0$ is the one for the x and y such that $X(\omega)Y(\omega) = xy$. **KORKAR KERKER EL VOLO**

Independence

 \triangleright X, Y independent \Rightarrow Var[X + Y] = Var[X] + Var[Y] [Proof: $Var[X + Y] = E[(X + Y - E[X + Y])^{2}]$ $= E[(X - E[X]) + (Y - E[Y])^2]$ $= E[(X - E[X])^2 + 2(X - E[X])(Y - E[Y]) + (Y - E[Y])^2]$ = $E[(X - E[X])^2] + 2E[(X - E[X])(Y - E[Y])] + E[(Y - E[Y])^2]$ claim 2nd term = 0, so this = $Var[X] + Var[Y]$. To see this, note that the factors are independent (a previous property), so by another previous property, it $= 2E[X - E[X]E[Y - E[Y]] = 2(E[X] - E[X])(E[Y] - E[Y])$ $= 2 \times 0 \times 0 = 0.$

KORK ERKER ADE YOUR

Calculating via independence

(modified from what was done in class) **Eg:** Suppose X and Y are independent, X has mean 3 and variance 5, Y has mean -2 and variance 4.

- Find $E[(X + Y)(2X + 3Y + 6)].$ Solution: $= 2E[X^2] + 5E[XY] + 3E[Y^2] + 6E[X] + 6E[Y]$. But $E[X^2] = Var[X] + E[X]^2 = 5 + 3^2 = 14$, $E[Y]^2 = \text{Var}[Y] + E[Y]^2 = 4 + (-2)^2 = 8$, and $E[XY] = E[X]E[Y] = 3(-2) = -6$ by independence. Putting it all together we get an answer of 28.
- \blacktriangleright Find Var[XY]

Solution: = $E[(XY)^2] - E[XY]^2 = E[X^2Y^2] - (E[X]E[Y])^2$ $E = E[X^2]E[Y^2] - E[X]^2E[Y]^2$ by independence. Using the numbers calculated above, $= 14 \times 8 - 3^2(-2)^2 = 76$.

Law of Large Numbers (LOLN)

- Exected Let X_1, X_2, \ldots, X_n be independent, with identical distributions (we say they're *IID*), and mean μ . Let $S_n = X_1 + \cdots + X_n$.
- ► The Law of Large Numbers says, heuristically, that $S_n/n \approx \mu$.
- \blacktriangleright Simple reason: If $\sigma^2 = \textsf{Var}[X_1]$ then $\text{Var}[S_n/n] = n\sigma^2/n^2 = \sigma^2/n \to 0$, so S_n/n is close to its mean, which is μ .
- \blacktriangleright This explains the long-run-average interpretation of expectations, which says that if X_k denotes our winnings from the k'th round of some game, then in the long run, the amount we win per round $(= S_n/n)$ is μ .
- \blacktriangleright It also explains our frequentist interpretation of probabilities: If A_k is an event arising from the k'th repeated trial of some experiment, then the relative frequency with which the A's occur is $\frac{1}{n}\sum 1_{A_k}$. And this is $\approx E[1_{A_1}]=P(A_1).$

LOLN

- All those conclusions come out of the heuristic $S_n/n \approx \mu$. But mathematically, we need a more precise formulation. This'll be the idea that the probability of finding S_n/n "significantly" deviating from μ gets small as *n* gets large.
- **Thm (LOLN)** X_1, X_2, \ldots IID integrable r.v., mean μ . Then $\forall \epsilon > 0$, $P\left(\left| \frac{S_n}{n} - \mu \right| > \epsilon \right) \to 0$ as $n \to \infty$.
- ► We prove this assuming $\sigma^2 = \text{Var}[X] < \infty$. The proof uses **Chebyshev's inequality:** Assume $E[Y] = \mu$, $a > 0$. Then $P(|Y - \mu| \ge a) \le \frac{\text{Var}[Y]}{a^2}$ $rac{a^2}{a^2}$.
- ► Variant: Let $\sigma^2 = \textsf{Var}[Y]$. Then $P\Big(|Y-\mu|\geq b\sigma\Big) \leq \frac{1}{b^2}$ $rac{1}{b^2}$.

▶ Proof of LOLN:
\n
$$
P\left(\left|\frac{S_n}{n} - \mu\right| > \epsilon\right) \leq \frac{\text{Var}[S_n/n]}{\epsilon^2} = \frac{\text{Var}[S_n]}{n^2\epsilon^2} = \frac{n\sigma^2}{n^2\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \to 0.
$$

Chebyshev's ineq.

- \triangleright The point of Chebyshev is that it gives a universal bound on the probabilities of deviations from the mean – you don't need to know much about the distribution of Y in order to apply it.
- \triangleright Something this general won't necessarily give a very tight bound in special cases. For example, deviation probabilities for the normal distribution decay much faster than what Chebyshev gives.
- \blacktriangleright Proof of Chebyshev:

If $|Y - \mu| \ge a$ then $\frac{(Y - \mu)^2}{2}$ $\frac{(-\mu)^2}{\mathsf{a}^2} \geq 1$. So $1_{\{|Y-\mu|\geq \mathsf{a}\}} \leq \frac{(Y-\mu)^2}{\mathsf{a}^2}$ $\frac{-\mu}{a^2}$. Chebyshev now follows by taking expectations.,

Markov's inequality

If $X \geq 0$ and $a > 0 \Rightarrow P(X \geq a) \leq \frac{E[X]}{1}$ $\frac{a}{a}$.

- \blacktriangleright Like Chebyshev, this gives a bound on probabilities, but now for prob's of large values, not values far from the mean
- \blacktriangleright The bound only depends on the mean of X (but also applies only to positive random variables)

Proof: I'll do it only in the case where there's a density f . Then $P(X \ge a) = \int_{a}^{\infty} f(x) dx$ $\leq \int_{a}^{\infty}$ $\overline{\mathsf{x}}$ $\frac{x}{a}f(x)$ dx (as $\frac{x}{a} \ge 1$ when $x \ge a$). $\leq \int_0^\infty$ $\overline{\mathsf{x}}$ $\frac{X}{a}f(x) dx = E[X]/a$ (as $X \ge 0$). ► Eg: If $X \ge 0$ has mean 2, then Markov $\Rightarrow P(X \ge 4) \le \frac{1}{2}$ $rac{1}{2}$.

If we add the information that $Var[X] = 1$, then we can improve this: Chebyshev $\Rightarrow P(X \geq 4) \leq P(|X - 2| \geq 2) \leq \frac{1}{4}$ $\frac{1}{4}$.

And if $X \sim Bin(4, \frac{1}{2})$ $\frac{1}{2}$) then actually $P(X \ge 4) = \frac{1}{16}$.

Central Limit Theorem

- I LOLN says that if $S_n = X_1 + \cdots + X_n$, where the X_i are IID with mean μ then $S_n \approx n\mu$. ie $S_n = n\mu +$ error.
- \triangleright The Central Limit Theorem refines this, and says that if Var $[X] = \sigma^2$ then the error is approximately $N(0, n\sigma^2)$. var[$\lambda_1 = \sigma$ and the error is approximate
ie. $S_n \approx n\mu + \sigma\sqrt{n}Z$, where $Z \sim N(0, 1)$.
- \triangleright This is the heuristic meaning of the CLT. To make it more precise, we solve for Z and apply the heuristic to calculating probabilities.
- **Thm (CLT):** Let X_1, X_2, \ldots be IID, with mean μ and variance σ^2 . Then $P\left(\frac{S_n-n\mu}{\sqrt{n}}\right)$ σ √ $rac{n\mu}{\overline{n}} \le z$) \rightarrow $P(Z \le z) = \Phi(z)$ as $n \rightarrow \infty$.
- If \exists time at the end of the course, we'll come back to the pf.
- \triangleright Basically says that for independent sums of many small r.v. we can approximate S_n by a normal r.v. having the same mean and variance as S_n .

Central Limit Theorem

- **Eg:** If the X_k are Bernoulli (ie indicators) then this $\mu = p$ and $\sigma^2 = \rho(1-\rho)$. We get $S_n \sim \mathsf{Bin}(n, \rho)$ and the <code>CLT</code> says exactly the same thing as our Normal approx. to the Binomial.
- \triangleright Eg: In Statistics, one uses frequently that statistics (like $\bar{\mathcal{X}}_n = \mathcal{S}_n/n)$ are asymptotically normal. The CLT is what proves this.
- Eg: $Y =$ sum of 20 independent Uniform([0, 1]) r.v. Find $P(Y > 8)$.

It is a lot of work to find the exact prob (we did the sum of 2 earlier). A normal approx. is much easier. The uniform mean is $\frac{1}{2}$ [done earlier] and the variance is $\frac{1}{12}$ [done earlier]. So $E[\overline{Y}] = 10$ and $Var[Y] = \frac{20}{12} = \frac{5}{3}$. Therefore 3 $P(Y \ge 8) = P\left(\frac{Y-10}{\sqrt{5/3}} \ge \frac{8-10}{\sqrt{5/3}}\right)$ 5/3 $\big) \approx P(Z \ge -1.5492) = 0.9393$ Note that there is no continuity correction here, as Y already has a density.

Central Limit Theorem

Eg: \bar{X} = the sample mean of 10 indep. r.v. with distribution $X_k =$ $\sqrt{ }$ \int \mathcal{L} 4, with prob. $\frac{1}{2}$ -4 , with prob. $\frac{1}{4}$ 0, with prob. $\frac{1}{4}$. Find $P(\bar{X} \leq 2)$. By CLT, S_{10} is approx. normal and therefore so is \overline{X} . $E[X_k] = \frac{4}{2} - \frac{4}{4} + \frac{0}{4} = 1$ and $\mathsf{Var}[X_k] = \bigl(\frac{4^2}{2} + \frac{(-4)^2}{4} + \frac{0^2}{4} \bigr)$ $\left(\frac{D^2}{4}\right) - 1^2 = 11.$ So $E[S_{10}] = 10$ and $Var[S_{10}] = 110$. So $E[\bar{X}] = 1$ and $Var[\bar{X}] = 1.1$; \overline{X} is discrete, so we do a continuity correction. The space between neighbouring values of S_{10} is 4, so that between neighbouring values of \overline{X} is 0.4; We split the difference, to apply the normal approx at non-sensitive values. $P(\bar{X} \le 2) = P(\bar{X} \le 2.2)$ $= P\left(\frac{\bar{X}-1}{\sqrt{1.1}}\right)$ $\frac{-1}{1.1} \leq \frac{2.2-1}{\sqrt{1.1}}$ $\Big) \approx P(Z \le 1.1442) = 0.8737$

Poisson Distribution

 \blacktriangleright X has a Poisson Distribution with parameter $\lambda > 0$ means that its possible values are $0, 1, 2, \ldots$ (ie any non-negative integer) and $P(X = k) = \frac{\lambda^k}{k!}$ $\frac{\lambda}{k!}e^{-\lambda}, k = 0, 1, 2, \ldots$ \triangleright Why is this a legitimate distribution? Need $\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = 1$. This follows since the Taylor series for e^{λ} is $\sum \lambda^k/k!$ \blacktriangleright $E[X] = \lambda$ [Proof: $E[X] = \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!}$ $\frac{\lambda^k}{k!}e^{-\lambda}$. The term with $k=0$ is 0 so drop it. Then cancel k with k! to give $(k - 1)!$ and switch to an index $j = k - 1$. ie. $E[X] = \sum_{j=0}^{\infty} \frac{\lambda^{j+1}}{j!}$ $\frac{j+1}{j!}e^{-\lambda}=\lambda\sum_{j=0}^{\infty}\frac{\lambda^j}{j!}$ $\frac{\lambda^j}{j!}e^{-\lambda}=\lambda\times 1]$

Poisson Distribution

► Var[X] =
$$
\lambda
$$
.
\n[Proof: $E[X^2] = \sum_{k=0}^{\infty} k^2 \frac{\lambda^k}{k!} e^{-\lambda}$
\n $= \sum_{k=0}^{\infty} k(k-1) \frac{\lambda^k}{k!} e^{-\lambda} + \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda}$], because
\n $k^2 = k(k-1) + k$. The 2nd sum is the mean, λ . We drop the
\n1st 2 terms from the first sum [as they =0], cancel $k(k-1)$
\nwith k! [leaving $(k-2)!$], and change the index to $j = k - 2$.
\nThis gives $E[X^2] = \lambda^2 \sum_{j=0}^{\infty} \frac{\lambda^j}{j!} e^{-\lambda} + \lambda = \lambda^2 \times 1 + \lambda$.
\nTherefore Var[X] = $(\lambda^2 + \lambda) - \lambda^2 = \lambda$.]

- \triangleright Why is the Poisson distribution important? It arises when modelling rare events.
- \triangleright An example of this is the **Poisson approximation to the** Binomial.

Poisson approximation to Binomial

- ► When *n* is large, and $X \sim Bin(n, p)$ then $X \approx$ normal. Provided p is NOT \approx 0 or \approx 1.
- If $p \approx 0$ the normal approximation is bad, and we turn to a Poisson approximation instead; *n* large, $p = \lambda/n \Rightarrow X \approx \text{Poisson}(\lambda)$.
- \triangleright More precisely, if $X \sim \text{Bin}(n, p_n)$ and $np_n \to \lambda$ as $n \to \infty$ then $P(X = k) \rightarrow \frac{\lambda^k}{k!}$ $\frac{\lambda^k}{k!}e^{-\lambda}$ for every k. [Proof: $P(X = k)$] $=$ $\binom{n}{k}$ $\binom{n}{k} p_n^k (1-p_n)^{n-k} = \frac{n(n-1)\cdots(n-k+1)}{k!}$ $\frac{n(n-k+1)}{k!} p_n^k (1-p_n)^{n-k}$ $=\frac{n(n-1)\cdots(n-k+1)}{n^k}$ $\frac{(n-k+1)}{n^k} \cdot \frac{(np_n)^k}{k!}$ $\frac{(p_n)^k}{k!} \cdot \left(1 - \frac{np_n}{n}\right)$ $\frac{(p_n)}{n}$ ⁿ · $(1-p_n)^{-k}$; Let $n \to \infty$. The 1st part = $(1)(1-\frac{1}{n})$ $\frac{1}{n})\cdots(1-\frac{k-1}{n})$ $\frac{-1}{n}) \rightarrow 1$ since each factor does. The 2nd part $\rightarrow \frac{\lambda^k}{k!}$ $\frac{\lambda^k}{k!}$; The 3rd part $\rightarrow e^{-\lambda}$ (take logs and use l'Hospital's rule); The 4th part \rightarrow 1. This does it.

Poisson sums

- ► If $X \sim \text{Bin}(m, p)$ and $Y \sim \text{Bin}(n, p)$ and X, Y are independent, then $X + Y \sim Bin(n + m, p)$. Because the number of successes in $n + m$ trials can be broken up as the number in the first n trials, plus the number in the remaining m.
- \blacktriangleright This suggests that sums of independent normals are normal, and also sums of independent Poisson's are Poisson. We'll verify the latter.
- ► If $X_1 \sim \text{Poisson}(\lambda_1)$ and $X_2 \sim \text{Poisson}(\lambda_2)$ are independent, then $X_1 + X_2 \sim \text{Poisson}(\lambda_1 + \lambda_2)$. [Proof: By additivity and independence, $P(X_1 + X_2 = n) = \sum_{k=0}^{n} P(X_1 = k, X_2 = n - k)$ $=\sum_{k=0}^n P(X_1 = k)P(X_2 = n - k) = \sum_{k=0}^n$ $\lambda_1^k e^{-\lambda_1}$ $\frac{e^{-\lambda_1}}{k!} \cdot \frac{\lambda_2^{n-k}e^{-\lambda_2}}{(n-k)!}$ $(n-k)!$ $=\frac{1}{n}$ $\frac{1}{n!}e^{-(\lambda_1+\lambda_2)}\sum_{k=0}^n\binom{n}{k}$ $\binom{n}{k}\lambda_1^k\lambda_2^{n-k}=\frac{(\lambda_1+\lambda_2)^n}{n!}$ $\frac{+\lambda_2)^n}{n!}e^{-(\lambda_1+\lambda_2)}$, by the binomial theorem. This proves it.]

KORK ERKER ADE YOUR

Poisson scatter

- In Let S be a set with a notion of the "size" |A| of its subsets A (eg length, if S is 1-dimensional, area if S is 2-dimensional, etc.). A **Poisson scatter** is a random number N of points chosen from S such that for some λ ,
	- \triangleright No two points can coincide.
	- \triangleright The number of points in disjoint sets A and B are indep.
	- \triangleright The mean number of points in any $A \subset S$ is $\lambda |A|$
- In this case, N must be Poisson($\lambda |S|$).
- \triangleright To see this divide S into *n* disjoint pieces A_k , each with the same probability p_n of containing a point. By independence, the number of A_k containing points is $\text{Bin}(n, p_n)$. Because points can't coincide, this number \uparrow N as $n \to \infty$. By the mean condition, p_n is asymptotically $\lambda |S|/n$. So the result follows from the Poisson limit theorem.
- \triangleright Is consistent with sums of independent Poisson being Poisson.

Poisson scatter

- Eg: Gives a reasonable model of:
	- \triangleright traffic fatalities in Toronto in a month;
	- earthquakes in B.C. in a year;

Eg: When a car is painted it has, on average, 1 defect per $10m^2$ (eg bubbles, dirt). Assuming that defects occur independently of each other, what is the probability that a car with area $4m^2$ has at least 2 defects

 \triangleright The Poisson scatter properties hold. So the total number of defects N has a Poisson distribution. We're given that the average number per m^2 is $\lambda = \frac{1}{10} = 0.1$; So $E[N] = 4\lambda = 0.4$; Therefore $P(N > 2) = 1 - P(N = 0) - P(N = 1)$ $= 1 - e^{-0.4} - 0.4 \times e^{-0.4} = 0.0616$

Geometric distribution

Under construction

- Geometric Distribution on $\{1, 2, 3, \dots\}$
- Geometric Distribution on $\{0, 1, 2, \dots\}$
- \triangleright Models time to 1st success (or 1st failure)

KORK ERKER ADE YOUR

- \blacktriangleright Mean and Variance
- \triangleright Eg: Flip a coin, wait for 1st Head.
- \blacktriangleright Eg: Craps (dice game)

Exponential distribution

Under construction

- \blacktriangleright Exponential distribution: density
- \triangleright Used in actuarial science (lifetimes), queueing theory (service times), reliability theory (failure times), etc.
- **If** Survival probabilities, λ = exponential decay rate.
- \blacktriangleright mean and variance
- \blacktriangleright memoryless property
- \blacktriangleright constant hazard rate
- \blacktriangleright [described more general hazard rates, ie ageing, but you're not responsible for this]

KORK ERKER ADE YOUR

Exponential distribution

Under construction

- \triangleright Eg: A person age 65 has an expected remaining lifetime of 20 years (ie to age 85). What's the probability they live to age at least 90?
- \triangleright Eg: We measure radioactive decay from a lump of uranium ore, and find that it takes on average 10 minutes till the first decay. What's the probability of a decay in the first 5 minutes?

Exponential and Poisson

- \triangleright The Poisson and Exponential are related. Let arrival times be distributed on [0, ∞) according to a Poisson scatter with rate λ . Let N_t be the number of arrivals before time t. Then N_t is Poisson(λt), and from that we can get that the time T_1 of the first arrival is Exponential(λ).
- \blacktriangleright To see this, observe that $P(T_1 > t) = P(\text{no arrivals in } [0, t]) = P(N_t = 0) = e^{-\lambda t}.$ From this we get that T_1 has an exponential cdf, and so an exponential density.
- ► More generally, if T_k is the time between the $k-1$ st and kth arrivals, then the T_k are independent Exponential(λ).
- In Let S_k be the time of the kth arrival, so $S_1 = T_1$, $S_2 = T_1 + T_2$, $S_3 = T_1 + T_2 + T_3$, etc. We can work out the density for S_k . It gives us an example of what's called a Gamma distribution. So sums of independent exponentials (with the same λ) are Gamma.

Gamma

For example, $P(S_2 > t) = P(\text{at most } 1 \text{ arrival in } [0, t])$ $\mathcal{P} = \mathcal{P}(N_t = 0) + \mathcal{P}(N_t = 1) = (1 + \lambda t) e^{-\lambda t}.$ So the cdf of \mathcal{S}_2 is $F(s) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$ $1-(1+\lambda t)e^{-\lambda t},\quad t\geq 0.$ ▶ This gives the density $f(s) = \begin{cases} 0, & t < 0 \\ 0, & t > 0 \end{cases}$ $\lambda^2 t e^{-\lambda t}$, $t > 0$.

In general, a Gamma density has the form $f(s) = \begin{cases} 0, & t < 0 \\ 0, & t < 0 \end{cases}$ $C(\alpha, \beta)t^{\alpha-1}e^{-t/\beta}, \quad t > 0.$

for parameters α and β . Here C is a constant that makes this integrate to 1.

KORK ERKER ADE YOUR

 \blacktriangleright The sum of k independent exponentials is then Gamma, with $\alpha = k$ and $\beta = 1/\lambda$.

Negative Binomial

- \triangleright Another example of a Gamma distribution is the Chi-squared distribution, from statistics. Now $\alpha = \frac{1}{2}$ $\frac{1}{2}$. [To see this, do exercise 10b of §4.4]
- In the discrete setting one can do similar things: Carry out independent trials and let N_k be the time of the kth success. One can calculate its distribution, called the Negative binomial.
- \triangleright One can show that N_k is also the sum of k independent Geometric r.v.
- $P(N_k = n) = P(n \text{th trial is } S, \& k 1 S' \text{s in 1st } n 1 \text{ trials})$ $= \left(\frac{n-1}{k-1} \right)$ $_{k-1}^{n-1}(1-p)^{n-k}p^k$, $n=k, k+1, \ldots$

KORKAR KERKER EL VOLO

[Note: You are not responsible for the Gamma or Negative Binomial distributions]

Discrete joint distributions

The joint distribution of a pair of r.v. X , Y is a table of values $P(X = x, Y = y)$. Use it to:

- \blacktriangleright Calculate expectations $E[g(X, Y)] = \sum_{x,y} g(x, y)P(X = x, Y = y).$ [Proof. $g(X, Y) = \sum_{x,y} g(x,y) 1_{\{X=x, Y=y\}}$. To see this, substitute ω . The LHS is $g(X(\omega), Y(\omega))$. All terms on the RHS = 0 except the one with $x = X(\omega)$ and $y = Y(\omega)$. And that gives $g(x, y) = g(X(\omega), Y(\omega))$. Now take expectations.]
- \blacktriangleright Verify independence.

ie. is $P(X = x, Y = y) = P(X = x)P(Y = y)$?

 \triangleright Calculate *marginal distributions* $P(X = x)$ and $P(Y = y)$. ie. sum over rows or columns, to get $P(X = x) = \sum_{\substack{y}} P(X = x, Y = y)$ and $P(Y = y) = \sum_{x} P(X = x, Y = y).$

Discrete joint distributions

- \triangleright Calculate conditional distributions $P(Y = y | X = x) = \frac{P(X=x, Y=y)}{P(X=x)}$.
- Find the covariance $Cov(X, Y) = E[(X E[X])(Y E[Y])]$ between X and Y .
- Find the correlation $\rho(X, Y)$ between X and Y. That is, find $\rho(X, Y) = \frac{Cov(X, Y)}{SD[X] \cdot SD[Y]}$.
- \triangleright We'll see that $-1 \leq \rho \leq 1$, and that ρ measures the extent to which there is a linear relationship between X and Y: $\rho = 0$ means they're uncorrelated; there is no linear relationship between them. $\rho = 1$ means they're perfectly positively correlated; there is a perfect linear relationship between them (with positive slope). $\rho = -1$ means they're perfectly negatively correlated; there is a perfect linear relationship between them (with negative slope). Other ρ 's reflect a partial linear relationship with varying degrees of strength.

Covariance

Properties of covariance:

 \triangleright Var[X] = Cov(X, X). [Pf: By definition]

- \triangleright X, Y independent \Rightarrow Cov(X, Y) = 0 \Rightarrow $\rho(X, Y) = 0$. $[Pf: E[X - E[X]] \cdot E[Y - E[Y]]$ by indep. This $= 0 \times 0$.]
- \triangleright Var[X + Y] = Var[X] + Var[Y] + 2Cov(X, Y). [Pf: $= E[((X+Y)-E[X+Y])^{2}] = E[((X-E[X])+(Y-E[Y]))^{2}].$ Now expand the square and match up terms.] This is consistent with our earlier observation that independence \Rightarrow Var of sum $=$ sum of Var.
- \triangleright Cov(X, Y) = E[XY] E[X]E[Y] [Pf: Expand, so = $E[XY - XE[Y] - YE[X] + E[X]E[Y]] =$ $E[XY] - E[X]E[Y] - E[X]E[Y] + E[X]E[Y]$, and just cancel the last 2 terms.]

Correlation

Properties of correlation:

- \blacktriangleright $-1 \leq \rho(X, Y) \leq 1$.
- $\rho = 1 \Rightarrow$ the values of X and Y always like on an upward sloping line. [They are perfectly positively correlated]
- $\rho = -1 \Rightarrow$ the values of X and Y always like on a downward sloping line. [They are perfectly negatively correlated]

[Pf: Let μ_X , σ_X , μ_Y , σ_Y be the mean and S.D. of X and Y. Then $0 \leq E\left[\left(\frac{X-\mu_X}{\sigma_X}\right)\right]$ $\frac{-\mu_X}{\sigma_X}-\frac{Y-\mu_Y}{\sigma_Y}$ $\left[\frac{-\mu_Y}{\sigma_Y}\right)^2\right]=\frac{\textsf{Var}(X)}{\sigma_X^2}+\frac{\textsf{Var}(Y)}{\sigma_Y^2}$ $= 1 + 1 - 2\rho(X, Y)$. So $2\rho \leq 2$, which shows that $\rho(X, Y) \leq 1$. $\frac{\text{Var}(Y)}{\sigma_Y^2} - 2 \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y}$ $\sigma_X \sigma_Y$ The only way we could have $\rho = 1$ is if the above expectation $= 0$, which implies that $\frac{X-\mu_X}{\sigma_X} = \frac{Y-\mu_Y}{\sigma_Y}$ $\frac{-\mu_Y}{\sigma_Y}$, a linear relationship. The same argument but with $E\left[\left(\frac{X-\mu_X}{\sigma_X}\right)\right]$ $\frac{-\mu_X}{\sigma_X} + \frac{Y - \mu_Y}{\sigma_Y}$ $\frac{-\mu_Y}{\sigma_Y}$)²] shows $\rho \ge -1$.]

Example

Eg: Suppose
$$
P(X = x, Y = y)
$$
 is
\n-1 0 1 x
\n1 0 $\frac{1}{7}$ $\frac{1}{7}$
\n0 $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$
\n-1 $\frac{1}{7}$ $\frac{1}{7}$ 0
\ny

\n- ▶ X and Y aren't independent, since\n
$$
P(X = -1, Y = 1) = 0 \neq P(X = -1)P(Y = 1).
$$
\n- ▶ E[XY] = (-1) × (-1) × $\frac{1}{7}$ + (-1) × 0 × $\frac{1}{7}$ + (-1) × 1 × 0 + 0 × (-1) × $\frac{1}{7}$ + 0 × 0 × $\frac{1}{7}$ + 0 × 1 × $\frac{1}{7}$ + 1 × (-1) × 0 + 1 × 0 × $\frac{1}{7}$ + 1 × 1 × $\frac{1}{7}$ = $\frac{2}{7}$.
\n

 \blacktriangleright Adding up each column, we get that the marginal distribution

of X is
$$
\begin{array}{|c|c|c|c|c|}\n x & -1 & 0 & 1 \\
\hline\n P(X = x) & \frac{2}{7} & \frac{3}{7} & \frac{2}{7}\n \end{array}
$$

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

Example (cont'd)

- \triangleright Adding up each row gives the marginal distribution for Y, which is the same as that of X .
- ► Therefore $E[X] = (-1) \times \frac{2}{7} + 0 \times \frac{3}{7} + 1 \times \frac{2}{7} = 0$. Likewise $E[Y] = 0.$
- ► So Cov $(X, Y) = E[XY] E[X]E[Y] = \frac{2}{7} 0 = \frac{2}{7}$. The fact that this $\neq 0$ also tells us that X and Y aren't independent.
- $\blacktriangleright E[X^2] = \frac{2}{7} + 0 + \frac{2}{7} = \frac{4}{7}$ $\frac{4}{7}$ and $E[X] = 0$, so $Var[X] = \frac{4}{7}$. LIkewise for Y .

▶ So
$$
\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}[X] \text{Var}[Y]}} = \frac{2/7}{4/7} = \frac{1}{2}
$$
.

 \triangleright Therefore the r.v. X and Y are positively correlated, but not perfectly so.

Example (cont'd)

If instead,
$$
P(X = x, Y = y)
$$
 was
\n-1 0 1 x
\n1 0 0 $\frac{1}{3}$
\n0 0 $\frac{1}{3}$ 0
\n-1 $\frac{1}{3}$ 0 0
\ny

- $E[XY] = \frac{2}{3}$, $Var[X] = \frac{2}{3} = Var[Y]$, so $Cov(X, Y) = \frac{2/3}{\sqrt{(2/3)}}$ $\frac{2/3}{(2/3)(2/3)}=1.$ In other words, now X and Y are perfectly correlated.
- In fact, in this case $Y = X$ so there is indeed a linear relation between them.

KORKAR KERKER EL VOLO

 \triangleright More generally, if $Y = aX + b$ then $\rho = 1$ when $a > 0$ and $\rho = -1$ when $a < 0$.