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Binomial Distribution

◮ The course now swings towards studying specific distributions
and their applications. Along the way we’ll define and study
means and variances.

◮ Recall that if X has a binomial distribution X ∼ Bin(n, p)
then P(X = k) =

(

n
k

)

pk(1− p)n−k , k = 0, 1, . . . , n.
Here 0 ≤ p ≤ 1 and n is a positive integer.

◮ We saw earlier (as an application of the binomial theorem)
that these probabilities sum to 1, so this really is a dist’n.

◮ It arises from counting the number of successes in n repeated
independent trials of some experiment. Each trial results in
success or failure. We need that:

◮ The trials are independent;
◮ There is the same probability p of success in each trial.

[Proof: A sequence SSFSFFS. . . has prob. pk(1− p)n−k , by
independence, if k is the # of S’s. There are

(

n
k

)

such
sequences.]



Binomial Distribution

◮ Eg: Draw 5 balls from an urn, with 6 red balls and 4 green
balls. X = # of reds in 5 draws.
If we draw with replacement then the draws are independent,
and X ∼ Bin(5, 0.6). So P(X = 2) =

(

5
2

)

0.620.43

◮ Eg: An opinion poll with yes/no answers will have a
binomially distributed number of “yes” responses. (Provided
it is done well, to ensure independence of responses).

◮ Eg: The number of girls among a family of 4 children is
Bin(4, 12) (ignoring the possibility of identical twins). So the
probability of getting 2 boys and 2 girls is
(

4
2

)

(12)
2(12 )

2 = 3
8 < 1

2 . We’ll see that a “balanced” family is
the most likely single configuration, but families are more
likely to be unbalanced.

◮ The binomial distribution is unimodal, ie probabilities go up
and then down. Eg, histogram for the above urn example:



Mode of the binomial

0 1 2 3 4 5

Histogram, reds in 5 draws:

◮ The Mode of a distribution is the most likely value (there may
be more than one mode, in case of ties). For Bin(n, p) this is
always either the integer immediately ≤ np or ≥ np. The
formula is that a mode is = ⌊(n+ 1)p⌋, ie the greatest integer
≤ (n + 1)p. (And ties are possible).

◮ In the family example above, 2 is the mode. For families of 5
children, 2 and 3 are both modes.



Normal Distribution

◮ X has a Normal or Gaussian distribution, with parameters µ

and σ2 if its density is
1

σ
√
2π

e
− (x−µ)2

2σ2 . Here σ > 0 and µ is

arbitrary. We write X ∼ N(µ, σ2).

◮ We will soon identify µ as the mean of the distribution, σ2 as
the variance, and σ as the standard deviation.

◮ But even now we see that µ is a location parameter (changing
µ just shifts the distribution without changing its shape), and
σ is a scale parameter (the distribution is concentrated around
µ when σ is small, and is spread out when σ is big.)

◮ N(µ, σ2) is unimodal, with mode at µ.



Normal Densities

varying µ (same σ)

varying σ (same µ)

µ



Normal Density

We should check that the normal density really is a density, ie that
it integrates to 1. The derivation uses material from MATH 2310,
which is not part of this course (and you are not responsible for it).
But I include it for completeness.
Change variables to z = x−µ

σ . We want to show that I = 1, where

I =

∫ ∞

−∞

1

σ
√
2π

e
− (x−µ)2

2σ2 dx =

∫ ∞

−∞

1√
2π

e−
z2

2 dz . Square this,

convert it to a double integral, and then change variables to polar
coordinates. We get

I 2 =
1

2π

∫ ∞

−∞

∫ ∞

−∞
e−

z2+w2

2 dz dw =
1

2π

∫ 2π

0

∫ ∞

0
e−

r2

2 r dr dθ

=
1

2π

[2π

0
1
][∞

0
− e−

r2

2

]

=
1

2π
× 2π × 1 = 1.

So I = 1, which is what we wanted to show.



Normal cdf

◮ Let Φ(z) be the cdf of a standard normal r.v. Z
(ie Z ∼ N(0, 1) has µ = 0 and σ = 1). Φ′(z) = 1√

2π
e−z2/2.

◮ There is no closed-form expression for Φ, so you have a table
of values instead (Appendix 5).

◮ We calculate probabilities for Normal r.v.’s using Φ plus:
◮ the general cdf formulae obtained earlier;
◮ continuity (ie Φ(z−) = Φ(z));
◮ symmetry (Φ(−z) = P(Z ≤ −z) = P(Z ≥ −z) = 1− Φ(z));
◮ transformations (see below)

◮ Lemma If X = µ+ σZ then X ∼ N(µ, σ2) ⇔ Z ∼ N(0, 1).

[Proof. Let Z ∼ N(0, 1) and X = µ+ σZ . The cdf of X is

F (x) = P(X ≤ x) = P(Z ≤ x − µ

σ
) = Φ

(x − µ

σ

)

. So X has

density F ′(x) = 1
σΦ

′
(

x−µ
σ

)

= 1
σ
√
2π
e
− (x−µ)2

2σ2 .

The converse is similar.]



Normal probabilities

Eg: Let X ∼ N(1, 4). Find P(0.5 ≤ X ≤ 3.46).

µ = 1 and σ2 = 4, so σ = 2. Therefore

P(0.5 ≤ X ≤ 3.46) = P
(0.5− 1

2
≤ X − 1

2
≤ 3.46 − 1

2

)

= P(−0.25 ≤ Z ≤ 1.23) = Φ(1.23) − Φ(−0.25)

= Φ(1.23) − (1− Φ(0.25)) = 0.8907 − 1 + 0.5987

= 0.4894

Here we’ve used the transformation z = x−1
2 , continuity of Φ [so

we didn’t need Φ(−0.25−)], symmetry, and have looked up two
values from Appendix 5.



Normal probabilities

◮ What if the value Φ(z) you want isn’t in the table? Basically
your choices are

◮ software
◮ crude approximation (ie round z to 2 decimals and use the

corresponding value from the table)
◮ linear interpolation.
◮ [And if programming, there are other useful approximation

formulae, eg. on p. 95 of the text]

◮ The best answer (if you have a computer) is to use software.
Eg, the NORMSDIST function in Excel computes the N(0, 1)
cdf for you. There are similar functions in all statistical
software (eg R is a nice statistical package, that is free to
download. In R the command is pnorm)

◮ Linear interpolation says that if l ≤ x ≤ r and
x = l + λ(r − l) then Φ(x) ≈ Φ(l) + λ(Φ(r)− Φ(l)).
That is, Φ(x) ≈ Φ(l) + x−l

r−l
(Φ(r)− Φ(l)).

This is exact for x = r or x = l .



Normal probabilities

Eg: X ∼ N(2, 3). Find P(X ≤ 4).

µ = 2 and σ =
√
3. So

P(X ≤ 4) = P
(

X−2√
3

≤ 4−2√
3

)

= P(Z ≤ 1.1547) = Φ(1.1547).

◮ Most accurate: = NORMSDIST(1.1547)=0.87589

◮ Least accurate: 1.1547 ≈ 1.15 so
Φ(1.1547) ≈ Φ(1.15) = 0.8749
[Note a bad answer, but only accurate to 3 decimals]

◮ Reasonably accurate: 1.1547 = 1.15 + 0.47× (1.16− 1.15) so
Φ(1.1547) ≈ Φ(1.15) + 0.47 × (Φ(1.16) − Φ(1.15))
= 0.8749 + 0.47× (0.8770 − 0.8749) = 0.8758
(now accurate to 4 decimals).



Normal probabilities

Eg: There is a rule of thumb that for normal distributions

◮ 70% of the mass lies within 1 standard deviation of the mean
ie. P(µ− σ ≤ X ≤ µ+ σ) ≈ 0.70

◮ 95% of the mass lies within 2 standard deviations of the mean
ie. P(µ− 2σ ≤ X ≤ µ+ 2σ) ≈ 0.95

◮ 99% of the mass lies within 3 standard deviations of the mean
ie. P(µ− 3σ ≤ X ≤ µ+ 3σ) ≈ 0.99

These round figures are easy to remember, but we can now
calculate more refined answers, taking Φ(1), Φ(2), Φ(3) from the
table. We would get:

◮ P(µ− σ ≤ X ≤ µ+ σ) = P(−1 ≤ Z ≤ 1) ≈ 0.6827

◮ P(µ− 2σ ≤ X ≤ µ+ 2σ) = P(−2 ≤ Z ≤ 2) ≈ 0.9545

◮ P(µ− 3σ ≤ X ≤ µ+ 3σ) = P(−3 ≤ Z ≤ 3) ≈ 0.9973



Normal approximation

◮ Bin(n, p) prob’s can be worked out exactly, when n is small.

◮ But when n is large, it is impractical to use the exact
formulae. Instead, we approximate binomial probabilities by
normal probabilities.

◮ For now, take the following as an empirical observation:
Let n be large and X ∼ Bin(n, p).
Then X ≈ Y , where Y ∼ N(np, np(1 − p)).
[We will see a rationale later, including the reason why we
take µ = np and σ2 = np(1− p).]

◮ This gives the following (crude) approximation formula:
X ∼ Bin(n, p) and n large ⇒ P(X ≤ x) ≈ P(Y ≤ x)
where Y ∼ N(np, np(1− p)).

◮ Eg: X ∼ Bin(1000, 0.5). Find P(X ≤ 495).
µ = 1000 × 0.5 = 500, σ2 = 1000 × 1

2 × 1
2 = 250.

So P(X ≤ 495) ≈ P(Y ≤ 495) = P(Z ≤ 495−500√
250

)

= Φ(−0.3162) = 0.3759



Continuity Correction

◮ Note that this crude approximation gives
P(X = 495) ≈ P(Y = 495) = 0 since Y has a continuous
distribution. It may be true that P(X = 495) is small. But
how small? Somehow we need to correct for approximating a
discrete distribution by a continuous one.

◮ For a general discrete r.v. X , taking possible values x1, . . . , xn
let δi = xi+1 − xi be the distance between neighbouring
values. Splitting the difference between neighbouring values,
we have that xi is the only possible value for X in the interval
[xi − δi−1

2 , xi +
δi
2 ] (Note: take δ0 = −∞, δn = +∞). So

P(X ≤ xi) = P(X ≤ xi +
δi
2 ), P(X ≥ xi ) = P(X ≥ xi − δi−1

2 )

and P(X = xi) = P(xi − δi−1

2 ≤ X ≤ xi +
δi
2 ). If we’re

approximating X by a r.v. with a continuous distribution,
we’ll generally get more accurate answers if we apply the
approximation to these expanded events (which are less
sensitive to changing x) rather than the original ones.



Continuity Correction

◮ In the binomial case all the δi = 1.

◮ Eg: X ∼ Bin(1000, 0.5). Then
P(X = 495) = P(494.5 ≤ X ≤ 495.5)

≈ P(494.5 ≤ Y ≤ 495.5) = P
(

494.5−500√
250

≤ Z ≤ 495.5−500√
250

)

=Φ(−0.2846) −Φ(−0.3479) = 0.0240

◮ Eg: P(X ≤ 495) = P(X ≤ 495.5) ≈ P(Y ≤ 495.5)
= P(Z ≤ 495.5−500√

250
) = Φ(−0.2846) = 0.3880

This will typically be a more accurate approximation than the
cruder version given earlier.

◮ To summarize, there are multiple choices to make. We can do
normal approximation with or without a continuity correction
(but including the correction gives greater accuracy when
approximating binomials). And the normal probabilities can be
found using software, crude rounding, or linear interpolation.



Eg: Batting averages

◮ (§2.2 Problem 11a) If a player’s true batting average is .300,
what is the probability of hitting .310 or better over the next
100 at bats?

◮ Let X be the number of hits in 100 at bats. Assuming that at
bats are independent, and that the probability of a hit is 0.3
for each at bat, we have X ∼ Bin(100, 0.3). 100× .310 = 31,
so we’re asked for P(X ≥ 31).

◮ We don’t want to work out the exact formula
(

100
31

)

(.3)31(.7)69 +
(

100
32

)

(.3)32(.7)68 + · · ·+
(

100
100

)

(.3)100(.7)0

◮ So approximate: X ≈ Y where Y ∼ N(µ, σ2) with
µ = np = 30 and σ2 = np(1− p) = 21.

◮ The crudest answer would be
P(X ≥ 31) ≈ P(Y ≥ 31) = P(Y−30√

21
≥ 31−30√

21
)

= P(Z ≥ .2182) = 1− Φ(.2182)
≈ 1− Φ(.22) = 1− .5871 = .4129



Eg: Batting averages

◮ Interpolation is better:
Φ(.2182) ≈ Φ(.21) + .82[Φ(.22) − Φ(.21)] = .5864 so
P(X ≥ 31) ≈ 1− .5864 = .4136

◮ And Excel is even better: NORMSDIST(.2182) = .58637 so
P(X ≥ 31) ≈ 1− .5864 = .41363

◮ But better than either of those improvements is incorporating
the continuity correction.
P(X ≥ 31) = P(X ≥ 30.5) ≈ P(Y ≥ 30.5)
= P(Y−30√

21
≥ 30.5−30√

21
) = P(Z ≥ .1091) = 1−Φ(.1091) Now

crude rounding would give ≈ .4562, and interpolation or Excel
would both give ≈ .4566

◮ In fact, using Excel one can compute the true value as being
.4509 so in this case the continuity correction improves
accuracy much more than interpolation, and brings the normal
approximation to within 2% of the true answer.



Means and expected values

◮ There are multiple ways of identifying a “typical” or
“average” value of a random variable X :

◮ The mode: most likely value, ie the x or x ’s maximizing
P(X = x) [discrete case] or the density f (x) [continuous case];

◮ The median: a value x (there may be more than one) such
that P(X ≥ x) ≥ 1

2 and P(X ≤ x) ≥ 1
2 . (In the continuous

case, this simplifies to having the cdf F (x) = 1
2 .)

◮ The mean: this is the right notion if we’re dealing with
long-run averages.

◮ Def’n: The mean or expected value of a r.v. X is
E [X ] =

∑

values x xP(X = x) [discrete case], or
E [X ] =

∫∞
−∞ xf (x) dx [continuous case].

◮ Note: To be sure these sums & integrals make sense, we will
always assume that X is integrable, ie that
∑ |x |P(X = x) < ∞ or

∫∞
−∞ |x |f (x) dx < ∞].



Means

◮ In other words, E [X ] is a weighted average of the values, with
the weights either probabilities or densities.

◮ Within a few weeks we will be able to prove the Law of Large

Numbers, that says that if X1,X2, . . . are independent
integrable r.v.’s, with the same distribution as X , then

X1 + X2 + · · ·+ Xn

n
→ E [X ]

in some sense, as n → ∞.

◮ So, for example, if we repeatedly play some game, and Xi is
how much we win or lose on the ith round, then over the long
run, the amount we win or lose per round is the mean E [X ].



Means

◮ Linearity: Expectations are linear:
E [X + Y ] = E [X ] + E [Y ] and E [cX ] = cE [X ].
[pf: will do the latter, in the discrete case: x is a possible
value for X ⇔ cx is a possible value for cX . So
E [cX ] =

∑

x cx · P(cX = cx) = c
∑

x x · P(X = x) = cE [X ]]

◮ Positivity: X ≥ 0 ⇒ E [X ] ≥ 0.

◮ Eg: E [c] = c

[pf: only one value, taken with probability 1, so
E [c] = c × 1 = c .]

◮ Eg: Find E [X ] if
x -1 0 1 3 5

P(X = x) 1
2

1
4

1
12

1
12

1
12

E [X ] = −1× 1
2 + 0× 1

4 + 1× 1
12 + 3× 1

12 + 5× 1
12 = 3

12 = 1
4 .

◮ Eg: If X is uniform on {x1, x2, . . . , xn}, then E [X ] = x1+···+xn
n

:
the arithmetic mean.



Means

◮ Eg: X ∼ Uniform on [a, b].

Then E [X ] =
∫∞
−∞ xf (x) dx =

∫ b

a
x

b−a
dx = 1

b−a

[b

a

x2

2

]

= b2−a2

2(b−a) =
(b−a)(b+a)

2(b−a) = b+a
2 , the midpoint of the interval.

◮ Eg: X ∼ N(µ, σ2).
If Z ∼ N(0, 1) then E [Z ] = 1√

2π

∫∞
−∞ ze−z2/2 dz = 0 by

symmetry (the integrand is an odd function). So by linearity,
E [X ] = E [µ+ σZ ] = µ+ σE [Z ] = µ.

◮ Eg: X ∼ Bin(n, p).
1st approach: definition. E [X ] =

∑n
k=0 k ·

(

n
k

)

pk(1− p)n−k

=
∑n

k=1 k
n!

k!(n−k)!p
k(1− p)n−k

=
∑n

k=1
n(n−1)!

(k−1)!((n−1)−(k−1))! p
1+k−1(1− p)(n−1)−(k−1)

= np
∑n−1

j=0
(n−1)!

j!((n−1)−j)!p
j(1− p)(n−1)−j

= np
∑n−1

j=0

(

n−1
j

)

pj(1− p)(n−1)−j = np(p+ (1− p))n−1 = np.



Method of Indicators

◮ For an event A, define an indicator random variable

1A(ω) =

{

1, ω ∈ A

0, ω /∈ A.

So 1 ↔ A occurs, 0 ↔ A doesn’t occur.

◮ E [1A] = 0× P(Ac) + 1× P(A) = P(A).

◮ If A1, . . . ,An are events, and X counts the number which
occur, then X =

∑

1Ak
(adding up 0’s and 1’s ⇔ counting

the 1’s). So E [X ] = E [
∑

1Ak
] =

∑

E [1Ak
] =

∑

P(Ak).

◮ Eg: X ∼ Bin(n, p).
2nd approach: indicators. Let Ak be the event that the kth
trial is a success. Then
E [X ] = E [

∑n
k=1 1Ak

] =
∑n

k=1 P(Ak) =
∑n

k=1 p = np.



Hypergeometric Mean

Eg: An urn has R red balls and Y yellow balls. Draw n without
replacement, and let X count the number of reds
[so X has a hypergeometric distribution].

◮ Let N = R + Y . We could work this out directly:

E [X ] =
∑n

k=0 k × (Rk)(
Y

n−k)
(Nn)

if n is small. There’s a similar

expression for general k ≤ n except that one needs 0 ≤ k ≤ R

and 0 ≤ n− k ≤ Y (otherwise we run out of balls).
Now cancel and simplify as in the binomial case . . .

◮ Indicators are much easier: Let Ai be the event that the ith
draw gives a red ball. By symmetry, P(Ai) =

R
N

for each i .

So E [X ] = E [
∑n

i=1 1Ai
] =

∑n
i=1 E [1Ai

] =
∑n

i=1 P(Ai) =
nR
N
.



Variances

◮ The variance of X is Var[X ] = E
[

(X − E [X ])2
]

.

If we approx. X by its mean, this = the mean-squared error.

◮ The standard deviation of X is SD[X ] =
√

Var[X ].
The square root puts SD[X ] in the same units as X .

◮ Both measure the degree of uncertainty or randomness in X :
Var[X ] = 0 means X is constant.

◮ 2nd moment formula: Var[X ] = E [X 2]− E [X ]2.

Proof: Var[X ] = E
[

(X − E [X ])2
]

= E
[

X 2 − 2XE [X ] + E [X ]2
]

= E [X 2]− 2E [X ]E [X ] + E [X ]2

= E [X 2]− E [X ]2.



Variances

◮ Other Properties:

1. Var[aX + b] = a2Var[X ]
Proof: E [(aX + b − E [aX + b])2] = E [(aX − aE [X ])2]
= E [a2(X − E [X ])2] = a2Var[X ].

2. SD[aX + b]=|a|SD[X ].
3. X1, . . . ,Xn independent ⇒ Var[

∑

Xk ]=
∑

Var[Xk ].
[We’ll come back and prove in a week or so, after studying
more about independence]

◮ To calculate Var[X ] we need to work out E [X 2]. We could do
this by doing a transformation and finding the cdf of X 2. But
a simpler formula is available:
E [g(X )] =

∑

x g(x)P(X = x) (discrete case)
E [g(X )] =

∫∞
−∞ g(x)f (x) dx (continuous case)

Proof: In the discrete case, let xi be the values of X , and let
Ai be the event that X = xi . Then g(X ) =

∑

i g(xi )1Ai
,

which gives the formula immediately.



Variances

In the continuous case, we’ll only give the proof when g is smooth,
increasing, 1-1, and onto. If Y = g(X ) and h(y) is the density of
Y , then h(y) = f (x)/g ′(x) [from transformations]. So

E [Y ] =
∫∞
−∞ yh(y) dy =

∫∞
−∞ g(x)× f (x)

g ′(x) × g ′(x) dx , which gives
the formula.

◮ Eg:
x -1 0 1 3 5

P(X = x) 1
2

1
4

1
12

1
12

1
12

We know from before that the mean = 1
4 . We could use

Var[X ] = (−1− 1
4 )

2 × 1
2 + (0− 1

4)
2 × 1

4 + (1− 1
4)

2 × 1
12+

+(3− 1
4)

2 × 1
12 + (5− 1

4)
2 × 1

12 .
But the 2nd moment formula is better:

E [X 2] = (−1)2

2 + (0)2

4 + (1)2

12 + (3)2

12 + (5)2

12 = 41
12 .

So Var[X ] = E [X 2]− E [X ]2 = 41
12 −

(

1
4

)2
= 161

48



◮ Eg: X ∼ Uniform on [a, b]:

E [X 2] =
∫∞
−∞ x2f (x) dx =

∫ b

a
x2

b−a
dx = 1

3(b−a)

[b

a
x3
]

= b3−a3

3(b−a) =
b2+ab+a2

3 . So Var[X ] = E [X 2]− E [X ]2

= b2+ab+a2

3 − b2+2ab+a2

4 = b2−2ab+a2

12 = (b−a)2

12 .
Of course, the smaller the interval, the smaller the variance.

◮ Eg: Normal X ∼ N(µ, σ2)
Take Z ∼ N(0, 1) and integrate by parts.
E [Z 2] = 1√

2π

∫∞
−∞ z2e−z2/2 dz

= 1√
2π

[∞

−∞
− ze−z2/2

]

+ 1√
2π

∫∞
−∞ e−z2/2 dz = 0 + 1 = 1.

So by scaling, Var[X ]=Var[µ + σZ ] = σ2Var[Z ] = σ2.

In other words, we’ve basically used the mean and variance to
parametrize N(µ, σ2).



Binomial Variance

Eg: X ∼ Bin(n, p).

◮ We can find the variance directly:
E [X 2] =

∑n
k=0 k

2
(

n
k

)

pk(1− p)n−k

=
∑n

k=0[k(k − 1) + k]
(

n
k

)

pk(1− p)n−k

=
∑n

k=2 k(k − 1)
(

n
k

)

pk(1− p)n−k + E [X ]

=
∑n

k=2
n!

(k−2)!(n−k)! p
k(1− p)n−k + np

=
∑n

k=2
n(n−1)(n−2)!

(k−2)!((n−2)−(k−2))! p
2+k−2(1− p)(n−2)−(k−2) + np

= n(n − 1)p2
∑n−2

j=0
(n−2)!

j!((n−2)−j)!p
j(1− p)(n−2)−j + np

= n(n − 1)p2 + np by the binomial theorem.
So Var[X ] = E [X 2]− E [X ]2 = n(n − 1)p2 + np − (np)2

= np[(n − 1)p + 1− np] = np(1− p)



Binomial/Hypergeometric Variance

◮ Or use indicators: Var[1A] = E [12A]− E [1A]
2 =

E [1A]− P(A)2 = P(A)− P(A)2 = P(A)[1− P(A)].

So let Ai be the event that the ith trial is a success. If we
jump ahead and use property 3 from (not proved yet), then by
independence,
Var[X ] = Var[

∑

1Ai
] =

∑

Var[1Ai
] =

∑

p(1−p) = np(1−p).

Eg: Hypergeometric variance.

◮ For notation, refer to the mean calculation.

◮ X =
∑n

i=1 1Ai
, so E [X 2] = E [

∑n
i ,j=1 1Ai

1Aj
] =

∑n
i ,j=1 E [1Ai

1Aj
] =

∑n
i ,j=1 E [1Ai∩Aj

] =
∑n

i ,j=1 P(Ai ∩ Aj).

◮ If i = j then P(Ai ∩ Aj) = P(Ai) =
R
N

by symmetry.

◮ If i 6= j then P(Ai ∩ Aj) =
R
N
× R−1

N−1 .

◮ So E [X 2] = n × R
N
+ n(n − 1)× R(R−1)

N(N−1) .



Hypergeometric Variance

◮ Therefore Var[X ] = E [X 2]− E [X ]2

= nR
N

+ n(n−1)R(R−1)
N(N−1) −

(

nR
N

)2
= nR

N

(

1 + (n−1)(R−1)
N−1 − nR

N

)

= nR
N

× N2−N+NnR−NR−Nn+N−nRN+nR
N(N−1) = nR

N
× (N−R)(N−n)

N(N−1) .

◮ We can interpret this by setting p = R
N
, the probability of

getting red on a single draw. Then E [X ] = np and
Var[X ] = np(1− p)N−n

N−1 .

◮ In other words, the mean of X is the same, whether we
sample with replacement (binomial) or without replacement
(hypergeometric). But the variance gets SMALLER when we
sample without replacement. The additional factor N−n

N−1 is
known as a finite size correction factor.


