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Independence and Conditional Probabilities

◮ Events A and B are said to be independent if

P(A ∩ B) = P(A)P(B).

◮ If P(B) 6= 0 then the conditional probability of A given B is

P(A | B) =
P(A ∩ B)

P(B)
.

Interpretation: If we repeat our experiment many times, one sees
that P(A | B) is the relative frequency with which A will occur, out
of just those repetitions in which B occurs. So it is the likelihood
that A will occur, if we’re given the information that B will occur.

Likewise, if P(B) 6= 0 then independence ⇒ P(A | B) = P(A).
That is, knowing that B will occur doesn’t affect the likelihood
that A will occur. In other words, independence means that B
occurring has no influence on A occuring.



Independence and Conditional Probabilities

Properties:

◮ Independent – P(A ∩ B) = P(A)P(B)
Mutually exclusive – P(A ∪ B) = P(A) + P(B).
These are different; don’t mix them up.

◮ P(A | A) = 1

◮ P(Ac | A) = 0

◮ P(Ac | B) = 1− P(A | B)
[pf: P(B) = P(A ∩ B) + P(Ac ∩ B). Now divide by P(B).]

◮ P(B) = 0 or 1 ⇒ B is independent of every event A.

◮ sampling with replacement ⇒ independence.
sampling without replacement ⇒ dependence.



Probabilities 7−→ Conditional Prob’s.

◮ Eg: Draw 2 cards in order, without replacement.

P(2nd is a ♥ | 1st is a ♥) =
P(both are ♥)

P(1st is a ♥)
=

13×12
52×51
13×51
52×51

=
12

51

[which is what we’d have guessed anyway].

◮ Roll 2 dice: P(1st is a 3) = 1
6 = P(2nd is a 3), and

P(both are 3’s) = 1
36 = 1

6 ×
1
6 , so they are independent

[as we’d have guessed]. Likewise

P(2nd is a 3 | 1st is a 3) =
P(both are 3’s)

P(2nd is a 3)
=

1
36
1
6

=
1

6
.

◮ Eg: Flip 4 coins. A is that all 4 flips agree.
B is that flips 1 & 2 are H. C is that flip 1 is H.
Then A and B are dependent, but A and C are independent.
[Calculate: P(A | C ) = 1

8 = P(A) 6= P(A | B) = 1
4 .

The probability that the last 3 flips agree with the 1st doesn’t
depend on whether the 1st is H or T.]



Conditional Prob’s 7−→ Probabilities.

◮ P(A ∩ B) = P(B)P(A | B)

◮ P(A ∩ B ∩ C ) = P(C )P(B | C )P(A | B ∩ C )

◮ Eg. 2 urns. 1st has 3 red balls, 5 yellow balls. 2nd has 2 red
and 3 yellow. Pick an urn at random and then a ball at
random from that urn. What is the probability that it’s red?

A: ball is red. B : pick first urn. We know that
P(B) = P(Bc) = 1

2 , P(A | B) = 3
8 , P(A | Bc) = 2

5 .
So P(A) = P(A ∩ B) + P(A ∩ Bc) = 1

2 ×
3
8 + 1

2 ×
2
5 = 31

80 .



Tree Diagrams

B

P(
B)

A P(A ∩ B) = P(B)P(A | B)P(A | B)

Ac P(Ac ∩ B) = P(B)P(Ac | B)P(Ac
| B)

Bc

P(B c
)

A P(A ∩ Bc) = P(Bc)P(A | Bc)P(A | B
c )

Ac P(Ac ∩ Bc) = P(Bc)P(Ac | Bc)P(Ac
| B c)

The probability for a node of the tree is the product of the
conditional probabilities along the branches leading to that node.



Tree Diagrams

Eg: Draw 2 cards without replacement. P(2nd is black) =?

1st method: By symmetry, the answer must = 1
2 .

2nd method: Go back to a model and count.
3rd method: Conditional probabilities:

1st is B
1
2

2nd is B 1
2 ×

25
51

25
51

2nd is R26
51

1st is R

1
2

2nd is B 1
2 ×

26
51

26
51

2nd is R25
51

Adding the probabilities for these 2 nodes gives 1
2(

25
51 + 26

51 ) =
1
2 .



Birthday problem

Eg: n people. P(∃ 2 people with the same birthday) =?

Put the people in some order and write eg. “3 /∈” as an
abbreviation for “the 3rd person’s birthday is different from the
first 2 peoples’ birthdays”.

2 /∈1−
1
365

3 /∈1−
2
365 n − 1 /∈

n /∈1−
n−

1

365

n ∈n−1
365

3 ∈2
365

2 ∈1
365

Then the probability of having shared birthdays is
1− (1− 1

365)(1 −
2

365 ) · · · (1−
n−1
365 ). If n = 30 this is ≈ 0.7063,

while if n = 65 it is ≈ 0.9977, and for n = 80 is ≈ 0.9999



Independence for 2 events

If A and B are indep., then the following are also indep.:

◮ Ac and B

[pf: P(Ac ∩ B) = P(B)− P(A ∩ B)
= P(B)− P(A)P(B) = (1− P(A))P(B) = P(Ac)P(B)]

◮ A and Bc [likewise]

◮ Ac and Bc [likewise]

We’ll see that this is the right way to generalize the notion of
independence to 3 (or more) events.



Independence of 3 events

Three events A,B ,C are said to be independent if
P(A1 ∩ B1 ∩ C1) = P(A1)P(B1)P(C1)
for A1 = A or Ac , B1 = B or Bc , and C1 = C or C c .
In other words, if the following 8 conditions hold:

◮ P(A ∩ B ∩ C ) = P(A)P(B)P(C )

◮ P(A ∩ B ∩ C c) = P(A)P(B)P(C c)

◮ P(A ∩ Bc ∩ C ) = P(A)P(Bc)P(C )

◮ P(Ac ∩ B ∩ C ) = P(Ac)P(B)P(C )

◮ P(A ∩ Bc ∩ C c) = P(A)P(Bc)P(C c )

◮ P(Ac ∩ B ∩ C c) = P(Ac)P(B)P(C c)

◮ P(Ac ∩ Bc ∩ C ) = P(Ac)P(Bc)P(C )

◮ P(Ac ∩ Bc ∩ C c) = P(Ac)P(Bc)P(C c )



Independence of 3 events

Consequences:

◮ A,B ,C indep. ⇒ pairwise independence.
[eg. A and B are independent, because
P(A ∩ B) = P(A ∩ B ∩ C ) + P(A ∩ B ∩ C c)
= P(A)P(B)P(C ) + P(A)P(B)P(C c) = P(A)P(B)]

◮ But A,B ,C pairwise indep. 6⇒ A,B ,C indep.
[You’ll work out a counterexample on an assignment]

◮ A,B ,C indep. ⇒ A indep. of any event got from B ,C .
[eg. P(A | B ∩ C ) = P(A)]

◮ Therefore all conditional probabilities in the tree diagram for
A,B ,C equal the corresponding probabilities.

◮ A,B ,C indep. ⇔
A,B ,C pairwise indep. and P(A∩B ∩C ) = P(A)P(B)P(C ).



Switches

Eg: 2 switches in parallel.

Switch 1 is closed (ie current flows through it), with probability p1.
Switch 2 is closed, with probability p2.
Assume the switches are open/closed independently of each other.
Problem: Find the probability that current flows through the
circuit.

p1

p2 Solution: Write using ∩’s:
Let Ai be the event that switch i is closed. P(current flows)
= P(A1 ∪ A2) = P(A1) + P(A2)− P(A1 ∩ A2) = p1 + p2 − p1p2.
Alternatively, P(A1 ∪ A2) = 1− (P((A1 ∪ A2)

c)
= 1− P(Ac

1 ∩ Ac
2) = 1− (1− p1)(1 − p2) = p1 + p2 − p1p2.



Switches

Eg: 2 switches in series.

p1 p2

Ai : event that switch i is closed.
P(current flows) = P(A1 ∩ A2) = p1p2

Eg: 3 switches.

p1 p2

p3



3 switch example, cont’d

A = event that current flows.
Ai = event that switch i is closed.
A12 = A! ∩ A2 is the event that current flows along the top.

◮ Inclusion/Exclusion: P(A) = P(A12 ∪ A3)
= P(A12) + P(A3)− P(A12 ∩ A3) = p1p2 + p3 − p1p2p3

◮ Complements: P(A) = 1− P(Ac) = 1− P(Ac
12 ∩ Ac

3)
= 1− P(Ac

12)P(A
c
3) = 1− (1− p1p2)(1− p3).

◮ Enumeration of alternatives:
A = A3 ∪ (A12 ∩ Ac

3) and the latter are disjoint. So
P(A) = P(A3) + P(A12 ∩ Ac

3) = p3 + p1p2(1− p3).

With each approach, the point is to write things in terms of
intersections, so that independence applies.



Bayes rule: 2 alternatives

◮ Problem: Compute P(B | A), knowing
P(B),P(A | B),P(A | Bc).

◮ Bayes rule: P(B | A) =
P(B)P(A | B)

P(B)P(A | B) + P(Bc)P(A | Bc)

◮ Proof: =P(A∩B)
P(A) = P(A∩B)

P(A∩B)+P(A∩Bc ) .

◮ Eg: 2 urns. Urn 1 has 3 Red & 5 Green balls. Urn 2 has 2
Red & 3 Green. Pick an urn at random and then a ball. If it’s
red, what are the chances we had picked the 1st urn? They
will no longer be 1

2 , since the evidence favours urn 2, which
has a higher % of reds.

A: get a red ball. B : pick 1st urn. P(B) = 1
2 , P(B

c) = 1
2 ,

P(A | B) = 3
8 , P(A | Bc) = 2

5 .

So P(B | A) =
1
2
×

3
8

1
2
×

3
8
+ 1

2
×

2
5

= 15
31 < 1

2



Bayes rule: multiple alternatives

◮ Let B1, . . . ,Bn partition Ω. ie the B ’s are nonempty and
disjoint, with ∪Bi = Ω.

◮ Bayes rule:

P(B1 | A) =
P(B1)P(A | B1)

P(B1)P(A | B1) + · · · + P(Bn)P(A | Bn)

◮ Proof: same as before.
2-alternative case is B1 = B , B2 = Bc .

◮ Eg: Medical screening test

A medical condition affects 1 person in 1,000. A test is 98%
effective on healthy people and 99% effective on infected ones
(ie it gives the “correct” answer that % of the time). If you
test positive, what’s the likelihood you have the condition?



Medical test, cont’d

◮ Define events A – test positive. B – are ill. Bc – are healthy.

◮ Problem asks for P(B | A)

◮ Information given is that P(B) = 0.001, P(Ac | Bc) = 0.98,
P(A | B) = 0.99

◮ Therefore we compute P(Bc) = 0.999 and P(A | Bc) = 0.02
and apply Bayes.

◮ P(B | A) = 0.001×0.99
0.001×0.99+0.999×0.02 ≈ 0.0472 – ie. rather small.

◮ Point is that Bayes ⇒ false positives can swamp true ones, if
the disease is rare. That is, such a screening test is only useful
as a trigger for further tests. Doctors need to be able to
explain this to patients.



Bayes rule cont’d

Other examples:

◮ Legal use of DNA testing:
A – DNA match; B – guilty; Bc – innocent.
Judge wants P(B | A). Have same false positive issue as
before: when a big database is tested, a match means much
less than when an actual suspect is tested.

◮ Bayesian statistics:
Suppose there is good evidence for a “prior probability”
P(Bk) for each alternative k . One then gathers data (ie
observes an event A) and one revises the prior to get
“posterior probabilities” P(Bk | A). That is, likelihoods for
the alternatives k , given the data.


