MATH 2030 3.00 – Elementary Probability Course Notes Part II: Independence and Conditional **Probabilities**

Tom Salisbury – salt@yorku.ca

York University, Dept. of Mathematics and Statistics Original version April 2010. Thanks are due to E. Brettler, V. Michkine, and R. Shieh for many corrections

January 18, 2018

ADD YEARS ARA YOUR

Independence and Conditional Probabilities

 \triangleright Events A and B are said to be *independent* if

 $P(A \cap B) = P(A)P(B).$

If $P(B) \neq 0$ then the conditional probability of A given B is

$$
P(A | B) = \frac{P(A \cap B)}{P(B)}.
$$

Interpretation: If we repeat our experiment many times, one sees that $P(A | B)$ is the relative frequency with which A will occur, out of just those repetitions in which B occurs. So it is the likelihood that A will occur, if we're given the information that B will occur. Likewise, if $P(B) \neq 0$ then independence $\Rightarrow P(A | B) = P(A)$. That is, knowing that B will occur doesn't affect the likelihood that A will occur. In other words, independence means that B occurring has no influence on A occuring.

Independence and Conditional Probabilities

Properties:

► Independent – $P(A \cap B) = P(A)P(B)$ Mutually exclusive – $P(A \cup B) = P(A) + P(B)$. These are different; don't mix them up.

$$
\blacktriangleright \; P(A \mid A) = 1
$$

$$
\blacktriangleright \; P(A^c \mid A) = 0
$$

 \blacktriangleright $P(A^c | B) = 1 - P(A | B)$ [pf: $P(B) = P(A \cap B) + P(A^c \cap B)$. Now divide by $P(B)$.]

ADD YEARS ARA YOUR

- $P(B) = 0$ or $1 \Rightarrow B$ is independent of every event A.
- \triangleright sampling with replacement \Rightarrow independence. sampling without replacement \Rightarrow dependence.

Probabilities \longmapsto Conditional Prob's.

► Eg: Draw 2 cards in order, without replacement. $P(\text{2nd is a } \heartsuit \mid \text{1st is a } \heartsuit) = \frac{P(\text{both are } \heartsuit)}{P(\text{1st is a } \heartsuit)} =$ 13×12 52×51 13×51 52×51 $=\frac{12}{51}$ 51 [which is what we'd have guessed anyway]. • **Roll 2 dice:** $P(\text{1st is a 3}) = \frac{1}{6} = P(\text{2nd is a 3})$, and

 $P(\text{both are 3's}) = \frac{1}{36} = \frac{1}{6} \times \frac{1}{6}$ $\frac{1}{6}$, so they are independent [as we'd have guessed]. Likewise 1

$$
P(\text{2nd is a 3} \mid \text{1st is a 3}) = \frac{P(\text{both are 3's})}{P(\text{2nd is a 3})} = \frac{\frac{1}{36}}{\frac{1}{6}} = \frac{1}{6}.
$$

 \triangleright Eg: Flip 4 coins. A is that all 4 flips agree. B is that flips $1 \& 2$ are H. C is that flip 1 is H. Then A and B are dependent, but A and C are independent. [Calculate: $P(A | C) = \frac{1}{8} = P(A) \neq P(A | B) = \frac{1}{4}$. The probability that the last 3 flips agree with the 1st doesn't depend on whether the 1st is H or T.]

Conditional Prob's 7−→ Probabilities.

- \blacktriangleright $P(A \cap B) = P(B)P(A \mid B)$
- $\blacktriangleright P(A \cap B \cap C) = P(C)P(B | C)P(A | B \cap C)$
- ► Eg. 2 urns. 1st has 3 red balls, 5 yellow balls. 2nd has 2 red and 3 yellow. Pick an urn at random and then a ball at random from that urn. What is the probability that it's red? A: ball is red. B: pick first urn. We know that $P(B) = P(B^c) = \frac{1}{2}$, $P(A | B) = \frac{3}{8}$, $P(A | B^c) = \frac{2}{5}$. So $P(A) = P(A \cap B) + P(A \cap B^c) = \frac{1}{2} \times \frac{3}{8} + \frac{1}{2} \times \frac{2}{5} = \frac{31}{80}$.

Tree Diagrams

The probability for a node of the tree is the product of the conditional probabilities along the branches leading to that node.

KORK ERKER ADAM DE SORA

Tree Diagrams

Eg: Draw 2 cards without replacement. $P(2nd$ is black) =? 1st method: By symmetry, the answer must $=$ $\frac{1}{2}$. 2nd method: Go back to a model and count. 3rd method: Conditional probabilities:

Adding the probabilities for these 2 nodes gives $\frac{1}{2}(\frac{25}{51} + \frac{26}{51}) = \frac{1}{2}$.

Birthday problem

Eg: *n* people. $P(\exists 2 \text{ people with the same birthday}) = ?$ Put the people in some order and write eg. "3 \notin " as an abbreviation for "the 3rd person's birthday is different from the first 2 peoples' birthdays".

Then the probability of having shared birthdays is 1 − $\left(1-\frac{1}{365}\right)\left(1-\frac{2}{365}\right)\cdots\left(1-\frac{n-1}{365}\right)$. If $n=30$ this is ≈ 0.7063 , while if $n = 65$ it is ≈ 0.9977 , and for $n = 80$ is ≈ 0.9999

Independence for 2 events

If A and B are indep., then the following are also indep.:

- A^c and B $[{\rm pf:} P(A^c \cap B) = P(B) - P(A \cap B)$ $= P(B) - P(A)P(B) = (1 - P(A))P(B) = P(A^c)P(B)$
- A and B^c [likewise]
- A^c and B^c [likewise]

We'll see that this is the right way to generalize the notion of independence to 3 (or more) events.

ADD YEARS ARA YOUR

Independence of 3 events

Three events A, B, C are said to be *independent* if $P(A_1 \cap B_1 \cap C_1) = P(A_1)P(B_1)P(C_1)$ for $A_1 = A$ or A^c , $B_1 = B$ or B^c , and $C_1 = C$ or C^c . In other words, if the following 8 conditions hold:

$$
\blacktriangleright P(A \cap B \cap C) = P(A)P(B)P(C)
$$

$$
\blacktriangleright P(A \cap B \cap C^c) = P(A)P(B)P(C^c)
$$

- ► $P(A \cap B^c \cap C) = P(A)P(B^c)P(C)$
- ► $P(A^c \cap B \cap C) = P(A^c)P(B)P(C)$
- ► $P(A \cap B^c \cap C^c) = P(A)P(B^c)P(C^c)$
- ► $P(A^c \cap B \cap C^c) = P(A^c)P(B)P(C^c)$
-
- ► $P(A^c \cap B^c \cap C) = P(A^c)P(B^c)P(C)$
- ► $P(A^c \cap B^c \cap C^c) = P(A^c)P(B^c)P(C^c)$

KORK ERKER ADAM DE SORA

Independence of 3 events

Consequences:

- A, B, C indep. \Rightarrow pairwise independence. $[eg. A and B are independent, because$ $P(A \cap B) = P(A \cap B \cap C) + P(A \cap B \cap C^c)$ $= P(A)P(B)P(C) + P(A)P(B)P(C^{c}) = P(A)P(B)$
- ► But A, B, C pairwise indep. \Rightarrow A, B, C indep. [You'll work out a counterexample on an assignment]
- A, B, C indep. \Rightarrow A indep. of any event got from B, C. $[eg. P(A \mid B \cap C) = P(A)]$
- \triangleright Therefore all conditional probabilities in the tree diagram for A,B, C equal the corresponding probabilities.
- A, B, C indep. \Leftrightarrow A, B, C pairwise indep. and $P(A \cap B \cap C) = P(A)P(B)P(C)$.

Switches

Eg: 2 switches in parallel.

Switch 1 is closed (ie current flows through it), with probability p_1 . Switch 2 is closed, with probability p_2 .

Assume the switches are open/closed independently of each other. Problem: Find the probability that current flows through the circuit.

Switches

Eg: 2 switches in series.

 A_i : event that switch i is closed. P(current flows) = $P(A_1 \cap A_2) = p_1p_2$

Eg: 3 switches.

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

3 switch example, cont'd

 $A =$ event that current flows.

 A_i = event that switch *i* is closed.

 $A_{12} = A_1 \cap A_2$ is the event that current flows along the top.

- ► Inclusion/Exclusion: $P(A) = P(A_{12} \cup A_3)$ $= P(A_{12}) + P(A_3) - P(A_{12} \cap A_3) = p_1p_2 + p_3 - p_1p_2p_3$
- ► Complements: $P(A) = 1 P(A^c) = 1 P(A_{12}^c \cap A_{32}^c)$ $\binom{c}{3}$ $= 1 - P(A_{12}^c)P(A_3^c)$ S_3^c) = 1 – $(1 - p_1 p_2)(1 - p_3)$.
- \blacktriangleright Enumeration of alternatives:

 $A = A_3 \cup (A_{12} \cap A_3^c)$ $\frac{2}{3}$) and the latter are disjoint. So $P(A) = P(A_3) + P(A_{12} \cap A_3^c)$ S_3^c) = $p_3 + p_1p_2(1-p_3)$.

With each approach, the point is to write things in terms of intersections, so that independence applies.

Bayes rule: 2 alternatives

- Problem: Compute $P(B | A)$, knowing $P(B), P(A | B), P(A | B^c).$
- Bayes rule: $P(B | A) = \frac{P(B)P(A | B)}{P(B)P(A | B) + P(B^c)P(A | B^c)}$

$$
\blacktriangleright \text{ Proof: } = \frac{P(A \cap B)}{P(A)} = \frac{P(A \cap B)}{P(A \cap B) + P(A \cap B^c)}.
$$

Eg: 2 urns. Urn 1 has 3 Red $& 5$ Green balls. Urn 2 has 2 Red & 3 Green. Pick an urn at random and then a ball. If it's red, what are the chances we had picked the 1st urn? They will no longer be $\frac{1}{2}$, since the evidence favours urn 2, which has a higher % of reds.

A: get a red ball. *B*: pick 1st urn.
$$
P(B) = \frac{1}{2}
$$
, $P(B^c) = \frac{1}{2}$,
\n $P(A | B) = \frac{3}{8}$, $P(A | B^c) = \frac{2}{5}$.
\nSo $P(B | A) = \frac{\frac{1}{2} \times \frac{3}{8}}{\frac{1}{2} \times \frac{3}{8} + \frac{1}{2} \times \frac{2}{5}} = \frac{15}{31} < \frac{1}{2}$

Bayes rule: multiple alternatives

- Exect B₁, ..., B_n partition Ω . ie the B's are nonempty and disjoint, with $\bigcup B_i = \Omega$.
- ▶ Bayes rule:

$$
P(B_1 | A) = \frac{P(B_1)P(A | B_1)}{P(B_1)P(A | B_1) + \cdots + P(B_n)P(A | B_n)}
$$

▶ Proof: same as before.

2-alternative case is $B_1 = B$, $B_2 = B^c$.

\blacktriangleright Eg: Medical screening test

A medical condition affects 1 person in 1,000. A test is 98% effective on healthy people and 99% effective on infected ones (ie it gives the "correct" answer that $\%$ of the time). If you test positive, what's the likelihood you have the condition?

Medical test, cont'd

- ► Define events A test positive. B are ill. B^c are healthy.
- Problem asks for $P(B | A)$
- Information given is that $P(B) = 0.001$, $P(A^c | B^c) = 0.98$, $P(A \mid B) = 0.99$
- Therefore we compute $P(B^c) = 0.999$ and $P(A | B^c) = 0.02$ and apply Bayes.
- ► $P(B | A) = \frac{0.001 \times 0.99}{0.001 \times 0.99 + 0.999 \times 0.02} \approx 0.0472 i$ e. rather small.
- $▶$ Point is that Bayes \Rightarrow false positives can swamp true ones, if the disease is rare. That is, such a screening test is only useful as a trigger for further tests. Doctors need to be able to explain this to patients.

Bayes rule cont'd

Other examples:

 \blacktriangleright Legal use of DNA testing:

 A – DNA match; B – guilty; B^c – innocent.

Judge wants $P(B | A)$. Have same false positive issue as before: when a big database is tested, a match means much less than when an actual suspect is tested.

 \blacktriangleright Bayesian statistics:

Suppose there is good evidence for a "prior probability" $P(B_k)$ for each alternative k. One then gathers data (ie observes an event A) and one revises the prior to get "posterior probabilities" $P(B_k | A)$. That is, likelihoods for the alternatives k , given the data.