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Introduction

I Probability: the mathematics used for Statistics
Are related but different.

I Probability question: Assume a coin is fair. Flip it 50 times.
What is the probability of getting 28 heads?

I Statistics question: Flip a coin 50 times and observe 28 heads.
Do you believe it is fair?

I Also fundamental in: mathematical modelling, modern physics
(statistical mechanics), electrical engineering (signal noise),
computer science (simulation), finance (option pricing), etc.

I Frequentist interpration: repeat an experiment a large number
of times. The probability of an event is the relative frequency
with which it occurs, in the long run.

I Other interpretations: level of uncertainty, or subjective belief.

I First task: build a mathematical model that captures our
empirical sense of probabilities.



Model

Model has three ingredients:

I a non-empty set Ω
I a collection F of subsets of Ω, satisfying

I ∅ ∈ F
I A ∈ F ⇒ Ac ∈ F
I A1,A2, · · · ∈ F ⇒ ∪Ai ∈ F

I a function P : F → R satisfying
I P(A) ≥ 0 ∀A ∈ F
I P(Ω) = 1
I A1,A2, · · · ∈ F and disjoint ⇒ P(∪Ai ) =

∑
P(Ai ).

Remarks: Here Ac = Ω \ A, where B \ A = {ω ∈ B | ω /∈ A}.
The model is (Ω,F ,P). F as above is called a σ-field, and P a
probability measure. The sequence A1,A2, . . . above can be finite
or countable, and the last property is called countable additivity.



Interpretation

I Elements ω ∈ Ω are called outcomes (or sample points or
states of nature).

I Ω is the sample space, ie. the set of all possible outcomes.
We think of the “experiment” as choosing ω at random from
Ω. So knowing what ω is chosen determines everything else:
ω should code within it all information we care about, and
answers to all questions we will ask.

I Events A are elements of F , so A ⊂ Ω. If ω is the outcome
“picked”, then we say A occurs if ω ∈ A.

I P(A) is the probability that the event A occurs. F is the set
of events to which we can assign probabilities.

I Random variables are measurements, whose values depend on
ω. Formally, are functions X : Ω→ R such that

{ω | X (ω) ≤ x} ∈ F ∀x ∈ R.



Example

Flip a fair coin twice:

I eg. if the first flip is “head” and the second is “tails” we
represent this by ω = (H,T ).

I So Ω = {(H,H), (H,T ), (T ,H), (T ,T )} has 4 elements.

I We’ll assign prob’s to all subsets of Ω. So F consists of all
16 = 24 subsets of Ω.

I eg. the event that the flips agree is {(H,H), (T ,T )}, and
contains 2 outcomes.

I “Fair” means all 4 outcomes are equally likely.
So let P(A) = #(A)/4.
eg. prob of 2 heads is P({(H,H)}) = 1

4 .
eg. prob that flips agree is P({(H,H), (T ,T )}) = 1

2 .



Example (continued)

I Let the random variable X be the number of heads.
I X ((H,H)) = 2
I X ((H,T )) = 1 = X ((T ,H))
I X ((T ,T )) = 0.

So P({ω | X (ω) = 2}) = 1
4 , P({ω | X (ω) = 1}) = 1

2 ,
P({ω | X (ω) = 0}) = 1

4 .

Remark: We abbreviate these as P(X = 2), P(X = 1), and
P(X = 0). More generally, for any real number x we write
P(X = x) as an abbreviation for P({ω | X (ω) = x}).

I There are 16 events in F :
I 1 with 0 outcomes, namely ∅
I 4 with 1 outcome, eg {(H,H)} (both flips are heads)
I 6 with 2 outcomes, eg {(H,H), (H,T )} (first flip is a head)
I 4 with 3 outcomes, eg {(H,H), (H,T ), (T ,H)} (at least one

is a head)
I 1 with 4 outcomes, namely Ω itself.



Example (continued)

In fact, to write it all out:

F =
{
∅, {(H,H)}, {(H,T )}, {(T ,H)}, {(T ,T )},

{(H,H), (H,T )}, {(H,H), (T ,H)}, {(H,H), (T ,T )},
{(H,T ), (T ,H)}, {(H,T ), (T ,T )}, {(T ,H), (T ,T )},
{(H,H), (H,T ), (T ,H)}, {(H,H), (H,T ), (T ,T )},
{(H,H), (T ,H), (T ,T )}, {(H,T ), (T ,H), (T ,T )},

{(H,H), (H,T ), (T ,H), (T ,T )}
}
.

I To model flipping unfair (or linked) coins, keep same F but
change P.



Interpretation

I Ac is the complimentary event to A. Ac occurs ⇔ A doesn’t.

I ∅ never occurs. A null event.

I Ω always occurs. A sure event.

I A ∪ B occurs ⇔ A occurs or B occurs (ie if at least one does)

I A ∩ B occurs ⇔ both A and B occur.

I A and B are disjoint ⇔ mutually exclusive

I A ⊂ B means that ω ∈ A⇒ ω ∈ B.
That is, if A occurs, then B occurs too.

I For discrete Ω (ie finite or countable), can take F to consist
of ALL subsets of Ω. And ALL X : Ω→ R as r.v. This won’t
work in general, but in this course we will behave as though
this is always the case. ie we will mostly ignore F now.



Models

I Whether we can use simple models depends on the questions
we’ll ask, since ω has to code all the answers. Eg to model
stock market for a month would take each ω to be a list of
ALL prices at ALL times. Eg a full statistical mechanics
model takes ω to code positions and momenta of ALL
particles. Often we need to know that a model ∃, but don’t
want to actually write it down.

I Have a choice of many ways to model the same experiment.
In fact (as soon as we have enough foundation) will try to do
higher-level calculations without actually specifying the details
of the model we’re using.



Properties / Consequences of the axioms

I P(Ac) = 1− P(A) (as A ∪ Ac = Ω disjointly).

I 0 ≤ P(A) ≤ 1 (as P(Ac) ≥ 0).

I A ⊂ B ⇒ P(A) ≤ P(B) (as B = A ∪ (B \ A) disjointly).

I P(A ∪ B) = P(A) + P(B)− P(A ∩ B)
(pf: break up disjointly as (A \ B) ∪ (A ∩ B) ∪ (B \ A).
Then use additivity.)

I P(A ∪ B ∪ C ) = P(A) + P(B) + P(C )− P(A ∩ B)
− P(A ∩ C )− P(B ∩ C ) + P(A ∩ B ∩ C ).

This is called inclusion/exclusion.
Proof can be given as above, or using Venn diagrams.



Discrete Models

I A model is discrete if Ω = {ω1, ω2, . . . } is finite or countable.

I In that case, P is determined by fixing numbers p1, p2, . . .
such that 0 ≤ pi ≤ 1 ∀i , and

∑
pi = 1. Just take

P(A) =
∑

i s.t. ωi ∈ A

pi .

I Special case: equally likely outcome models
Ω finite, all pi equal. Then pi = 1/#(Ω), and

P(A) =
#(A)

#(Ω
.

In this case we will calculate by counting.



More complicated models

I Not all models are discrete.

Example: Model for a uniform r.v..
Ω = [0, 1), P(A) = |A|. (F is complicated. = “Borel sets”. This is
a case where it CAN’T be all subsets, only reasonable ones).
Take Y (ω) = ω ∈ R.
eg. P(Y ≤ x) = |[0, x ]| = x , for 0 ≤ x < 1.
We’ll study such r.v. later (using calculus).

Example: Model for ∞ many coin flips.
Ω = [0, 1), P(A) = |A| (as before)
Write ω = 0.ω1ω2ω3 . . . in binary (eg 1

2 = .1, 34 = .11, 14 = .01).
If 0 represents T and 1 represents H, then the ith coin flip r.v. is
Xi (ω) = ωi .
eg. P(X1 = 0) = |[0, 12)| = 1

2 , P(X2 = 0) = |[0, 14) ∪ [12 ,
3
4)| = 1

2 .
P(X1 = 0 and X2 = 1) = |[14 ,

1
2)| = 1

4 .



Discrete r.v.

I A r.v. has a discrete distribution if there are only finitely or
countably many values it can take.

I In that case, the distribution is given by a table of values x
and probabilities P(X = x). Eg. No. of H in 2 coin flips:

x 0 1 2

P(X = x) 1
4

1
2

1
4

Eg. Roll 2 dice, X = sum of the numbers showing.
Take an equally likely outcome model,
Ω = {(i , j) | 1 ≤ i , j ≤ 6} = {(1, 1), . . . , (6, 6)}.
So {ω | X (ω) = 2} = {(1, 1)} has probability 1

36 ,
{ω | X (ω) = 3} = {(1, 2), (2, 1)} has probability 2

36 .

x 2 3 4 5 6 7 8 9 10 11 12

P(X = x) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36



Counting

Want to count #(A), the number of elements in a set A.
Do this by finding a list of k properties that each element has.
Need to do this so the following hold

I Each property can be specified some fixed number of ways,
regardless of how the other properties were specified.
Let ni be the number of choices for the ith property.

I There is a one-to-one correspondence between ways of
specifying all these properties, and elements of A.

Then #(A) = n1 × n2 × · · · × nk . [Basic counting principle]

I Eg. Dice: We just saw that there were 36 ways to roll two
dice in sequence. In this framework, there are two properties
in our list: the first roll (6 possibilities), and the second roll (6
possibilities). 36 = 6× 6.



Counting

I Subsets: If A has n elements, how many subsets B ⊂ A are
there? Here there are n properties in our list: Is the 1st
element in or out? Is the 2nd element in or out? etc. There
are two possibilities for each, so there are 2× 2× · · · × 2 = 2n

subsets.

I Eg. Cards: Each card has two properties: a value and a suit.
There are 13 ways of specifying the value (Ace, 2, 3, 4, 5, 6,
7, 8, 9, Jack, Queen, King) and 4 ways of specifying the suit
(clubs ♣ , diamonds ♦, hearts ♥, spades ♠). Specifying a
card is the same as specifying its value and suit, so
#(cards) = 13× 4 = 52.
[In future, spades and clubs will be called black suits, and
diamonds and hearts will be called red suits]



Eg. 3-card hands

Deal out 3 cards in sequence, without replacement. ie a card hand
is (a, b, c) where a is the 1st card dealt, b is the 2nd card dealt,
and c is the 3rd card dealt. Want to count the number of:

I 3-card hands: Imagine ranking the 52 cards in some way.
The properties are: the first card (52 ways); the ranking of
the 2nd card among the remaining cards (51 ways); the
ranking of the 3rd card among the remaining cards (50 ways).
so #(hands) = 52× 51× 50.

I 3-card hands with same value: 52× 3× 2

I 3-card hands with same suit: 52× 12× 11

I 3-card hands with 1 pair: (ie 2 with = value, other 6=).
Properties: value for pair, 1st pair suit, 2nd pair suit, other
card, deal for other card: 13× 4× 3× 48× 3
[Bad properties: 1st card (52 ways), 2nd (51 ways), 3rd card
(48 or 6 ways, depending on the 1st and 2nd choices). So
would have to break up as 52× 3× 48 + 52× 48× 6]



Permutations

I Choose k distinct objects from n objects, in order. In other
words, let #(A) = n, and take

(n)k = #{(a1, a2, . . . , ak) | each ai ∈ A, all ai distinct},

the number of permutations of k objects from n objects.

I So (n)k = n(n − 1)(n − 2) . . . (n − k + 1)︸ ︷︷ ︸
k

=
n!

(n − k)!
, where

n! = n(n − 1) · · · (3)(2)(1).
[Sometimes people write nPk for (n)k .]

I Eg: The number of ways of ordering n objects is (n)n = n!

I Eg: The number of 3-card hands (dealt in order) is
(52)3 = 52× 51× 50.

I Convention: 0! = 1 and (n)0 = 1.



Combinations

I Choose k distinct objects from n objects, without order. In
other words, let #(A) = n, and take(

n

k

)
= #{B | B is a k-element subset of A},

the number of combinations of k objects from n objects.
This is read “n choose k” [and sometimes people write nCk

for
(n
k

)
.] Also called a binomial coefficient.

I If we count permutations by counting first the subset, and
then the way it is ordered, we get (n)k =

(n
k

)
· k!, that is,(

n

k

)
=

n!

k!(n − k)!

I So
(n
n

)
= 1 =

(n
0

)
,
(n
1

)
= n,

(n
k

)
=
( n
n−k
)
.



Poker hands without order

Deal out 5 cards without replacement, and without distinguishing
on the basis of the sequence they’re dealt in. ie a card hand is a
5-card subset of the set of 52 cards. Want to count the number of:

I hands:
(52
5

)
= 2, 598, 960

I flushes:
(4
1

)(13
5

)
= 5, 148. [Really should subtract the

probability of a straight flush].

I 3 of a kind:
(13
1

)(12
2

)(4
3

)(4
1

)(4
1

)
[Choose 3-value, other values,

3-suits, suit for lowest other value, suit for highest other value.
Note that we are excluding a full house or a 4 of a kind]

I pairs:
(13
1

)(12
3

)(4
2

)(4
1

)(4
1

)(4
1

)
.

I In a fair deal, all outcomes are equally likely. Can work out
probabilities either with order (permutations) or without
(combinations). Counting is different, but probabilities should
be the same.



Binomial theorem

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k

I Expand (a + b)n = (a + b)(a + b) · · · (a + b). Get a sum of
terms c1c2 · · · cn where each ci is a or b. How many are
akbn−k? Choose the k locations corresponding to a’s, so

(n
k

)
.

I Eg. (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4.

I Recurrence
(n
k

)
=
(n−1
k−1
)

+
(n−1

k

)
.

[k element subsets of {1, 2, . . . , n} either include n or they
don’t.

(n−1
k−1
)

do, and
(n−1

k

)
don’t]

I This ⇒ Pascal’s triangle (see text). An inefficient way of
finding one binomial coefficient, but a good way of finding a
whole row.



Binomial distribution

I Let 0 ≤ p ≤ 1. Say that a random variable X has a binomial
distribution with parameters n and p, or X ∼ Bin(n, p), if

P(X = k) =

(
n

k

)
pk(1− p)n−k for k = 0, 1, . . . , n.

I This makes sense, because all these are ≥ 0, and by the

binomial theorem, they sum to
(
p + (1− p)

)n
= 1n = 1.

I We’ll study this distribution later, where it will be important
for things like counting the number of successes in
independent trials.



Sampling

I With replacement: An urn has 12 red balls and 8 green
balls. Pick 5, with replacement. P(3R, 2G) =??
Take Ω = all sequences (a1, a2, . . . , a5) chosen from
{R1,R2, . . . ,R12,B1, . . . ,B8}. #(Ω) = 205. The event A has
#(A) =

(5
3

)
12382. So P(A) =

(5
3

)
(1220)3( 8

20)2 ≈ 0.3456
[In fact, the number of reds has a binomial distribution.]

I Without replacement: Now Ω = all 5-element subsets of
{R1,R2, . . . ,R12,B1, . . . ,B8}. #(Ω) =

(20
5

)
= 15, 504 and

#(A) =
(12
3

)(8
2

)
= 6, 160, so

P(A) =

(12
3

)(8
2

)(20
5

) ≈ 0.3456

[Now the number of reds has what is called a hypergeometric
distribution]

I Either case could be done with or without order, but these
choices are easiest.


