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Asset Allocation and the Liquidity Premium for Illiquid Annuities.

ABSTRACT

Academics and practitioners alike have developed numerous techniques for bench-
marking investment returns to properly adjust seemingly-high numbers for ex-
cessive levels of risk. The same, however, can not be said for liquidity, or the
lack thereof. This paper develops a model for analyzing the ex ante liquidity pre-
mium demanded by the holder of an illiquid annuity. The annuity is an insurance
product that is akin to a pension savings account with both an accumulation and
decumulation phase. We compute the yield (spread) needed to compensate for
the utility welfare loss, which is induced by the inability to rebalance and main-
tain an optimal portfolio when holding an annuity. Our analysis goes beyond
the current literature, by focusing on the interaction between time horizon (both
deterministic and stochastic), risk aversion and pre-existing portfolio holdings.
More specifically, we derive a negative relationship between a greater level of
individual risk aversion and the demanded liquidity premium. We also confirm
that, ceteris paribus, the required liquidity premium is an increasing function of
the holding period restriction, the subjective return from the market, and is quite

sensitive to the individuals endowed (pre-existing) portfolio.



“.If the insurance company has greater and longer surrender charges, then it
can pay more, on fixed annuities, knowing the funds aren’t going to leave, so the

liability structure will be more stable...Best’s Review, October 2001, pg. 43”

1 Introduction and Motivation

In the United States, the term annuity covers a wide spectrum of financial and insurance
products. A savings (pay-in) annuity is akin to a bank account or savings bond where money
is accumulated over a period of time at a variable or fixed rate of interest. In contrast, a
consumption (pay-out) annuity is similar to a pension that pays a periodic fixed or variable
amount, which might also contain longevity insurance. The former is usually used prior to
retirement, while the later is used during the retirement years. According to the above-
quoted A.M. Best survey, more than $1 trillion is currently invested in various types of
annuity products in the U.S.

The common denominator of fixed (in contrast to variable) savings and consumption
annuities is that they are quite illiquid. Namely, in stark contrast to a money market fund
or savings bond that can be redeemed on a daily basis without any penalty, it is difficult or
very costly to surrender (or cash-in) a fixed annuity. While the reasons for this illiquidity
differ depending on whether the product is in the accumulation or decumulation phase, the
fact remains that continuous asset re-allocation is virtually impossible with these products.
Our paper therefore asks a simple question: What is the liquidity premium that a rational
wnwvestor will demand to compensate for the inability to maintain a properly rebalanced and
diversified portfolio?

Thus, for example, the holder of a fixed (savings) annuity might be told that he or
she cannot withdraw from (or cash out of) the product for the first seven years of the
contract. Or, in the event of a permissible early withdrawal during first seven years, one
might be ‘hit’ with an 2% penalty, a.k.a. market value adjustment. In the decumulation
phase, the illiquidity is often accepted as the cost of obtaining longevity insurance, while in
the accumulation phase, policyholders are told that their return will exceed the yield of a
comparably liquid instrument. Indeed, it is quite common to see a monotonic relationship

between the magnitude of the early surrender charges on a fixed annuity — controlling for



commissions — and the guaranteed yield if the product is held to maturity. Implicitly,
investors (or more precisely, policyholders) are being promised compensation for the liquidity
restrictions.

Recent academic literature has documented the empirical welfare gains from annuity
products and annuitization, as well as the value of longevity insurance. For example Mitchell
et. al. (1999) argued that consumers would be willing to ‘give up’ 30% of their wealth to
obtain a fairly priced annuity. Likewise, Brown and Poterba (2000) explained the extremely
low levels of annuitization by arguing that married couples function as a mini annuity market.
Blake and Burrows (2001) focused on the undesirable longevity risk taken by insurance
companies issuing payout annuities, and the need for governments to issue mortality-linked
bonds.

However, most of the literature discussing the costs and benefits of annuitization has
ignored some of the problems created by having a portfolio that cannot be liquidated or
rebalanced for long periods of time.

There are two lines of reasoning on the topic of liquidity compensation. Some finan-
cial economists, such as Longstaff (1995, 2001) argue that one should be compensated in
equilibrium for illiquidity restrictions. In other words, all else being equal, a fixed income
instrument that cannot be sold — or, for that matter, subsequently repurchased — over the life
of the product, should provide investors with a higher yield. An alternative line of reasoning
is that in equilibrium, investors should not be compensated for illiquidity, because they can
lengthen their trading horizon when faced with such securities. In other words, they can
use illiquid instruments to fund long-term liabilities, without demanding any compensation
for this inconvenience. We refer the interested reader to Vayanos and Vila (1999) for a
model that pursues this particular approach. In this paper we pursue the former approach,
although we discuss conditions in which the latter might apply.

Note, of course, that from an insurance companies’ perspective, liquidity restrictions
are absolutely necessary to manage the duration mismatch (or risks) that otherwise would
arise if incoming funds are invested in long-term projects, but yet instantaneously available to
policyholders. Insurance companies must protect themselves by imposing a disintermediation
(or market value adjustment) surrender charge. Therefore, from the perspective of the vendor

of such products, our model should help determine the appropriate level of restrictions wvis



a vis the promised yield. Indeed, one of our results is that individuals that have very little
‘outside’ wealth invested in the financial markets will demand a higher liquidity premium
on the restricted annuities (for example within a pension plan) since they can not offset the
rebalancing risk with other investments.

This so-called liquidity premium cannot, of course, be determined in isolation; its value
will depend on the alternative investments available, and the investor’s willingness to make
use of them. Thus, we will work in a framework in which there is both a fixed and a variable
annuity, and we will impute the investor’s level of risk aversion from the allocation chosen
between the two annuities.

There is nascent body of research on the general topic of liquidity, marketability and the
bid-ask spread. Various empirical and theoretical studies, such as Silber (1991), Amihud and
Mendelson (1991) and more recently, Jacoby, Gottesman and Fowler (2000), Garvey (2001),
Brenner, Eldor and Hauser (2001), Dimson and Hanke (2001), Loderer and Lukas (2001),
have argued and documented that the yield to maturity, or investment returns, on less
liquid financial instruments might be higher compared to their identical liquid counterparts.
In related papers, Faig and Shum (2002) investigated the relationship between illiquidity and
portfolio choice, while Cao and Wei (2002) examined the valuation of restricted and hence
highly illiquid stock options.

However, it appears that limited research has been done on developing a subjective metric
for computing the demanded ex ante compensation for illiquidity. The exception is a series of
papers by Longstaff (1995, 2001). We will provide a more detailed comparison to Longstaff’s
model, later in our analysis.

The remainder of this paper is organized as follows. In Section 1.1 we demonstrate
the simple economic intuition that underlies our model using a basic numerical example.
Section 2 develops a formal utility-based model for the liquidity premium in the case of a
savings (pay-in) annuity, where the time horizon is deterministic and the product is akin to
a zero-coupon bond or a Certificate of Deposit. Section 3 solves the model using numerical
techniques, with comparative statics provided in Section 3.1 and a comparison to Longstaft’s
approach discussed in Section 3.2. Then, Section 4 provides a parallel analysis for a con-
sumption (pay-out) annuity, where payments are received by the annuitant with embedded

longevity insurance. Finally, section 5 concludes the paper.



1.1 Numerical Example.

To understand the welfare loss from a lack of liquidity we offer the following stylized example.
Consider a hypothetical investor (or policyholder) with $100,000 to invest, and assume this
sum is the bulk of their financial wealth. The investor decides to allocate 50% to a fixed
annuity (risk-free asset) with liquidity restrictions and 50% to a risky equity (variable)
annuity!. Further, we make the critical assumption that the investor has picked this allocation
because it maximizes his or her expected utility of wealth.

In the language of Merton (1969), we let af = 1/2, Vt <T', denote the optimal allocation
to the risky asset, and we let U} denote the maximal expected utility, at the terminal horizon
T. Merton (1969) demonstrated that an investor with constant relative risk aversion (CRRA)
preferences for uncertain wealth at the terminal time 7', modeled by u(w) = w(= /(1 — ),
and faced with Geometric Brownian Motion asset dynamics, will select a time-invariant
(a.k.a. myopic) investment policy. This well-known Merton result has been generalized to
alternative asset processes and consumer preferences. See Kim and Omberg (1996) for more
details on the necessary and sufficient conditions for myopic investment policies.

We caution the reader that an o} = 1/2 allocation, also known as constant proportional
strategy, does mot imply the portfolio is invested half in equities and half in cash, and
then held as is until maturity. A buy-and-hold strategy is sub-optimal in a classical Merton
framework. Indeed, our 50/50 balance must be maintained by reacting to market movements
and rebalancing the portfolio. In other words, rational utility-maximizing behavior requires
frequent trading and rebalancing regardless of one’s investment horizon or risk preferences.
See Browne (1998) for more information on constant proportional strategies.

Suppose, for example, that the general stock market drops 30% within a short period of
time. And, as a result, the value of the equity account (a.k.a. variable annuity) drops from
$50,000 to $35,000 (= $50,000 x 70%). The investor now has only $85,000 in total, of which,
by construction, 41% (= $35,000 / $85,000) is in the equity account, and 59% (= $50,000 /
$85,000) is in the fixed annuity. The investor is holding a non-optimal portfolio, which, in
theory, should be rebalanced.

IThe 50/50 allocation is chosen for pure symmetrical reasons simply to illustrate the example. In the
next section we provide results for general asset allocations and discuss the impact of the pre-existing mix

on the liquidity premium.



A rational investor will want to sell a portion of (or transfer from) the fixed annuity
into the equity account to re-establish the optimal 50/50 mix between fixed and variable
investments. Specifically, the investor will want to transfer $7,500 from the fixed annuity to
the variable account so that $42,500 is invested in fixed assets, and $42.500 is invested in
variable assets; thus maintaining the delicate of = 1/2 mix. Of course, if this investor has
a large portfolio of other (for example, non pension) assets, they might use those to achieve
the required asset allocation.

Our main point is that liquidity restrictions in the fixed annuity will impede the optimal
process of re-allocation. This is the forgone opportunity cost. Even the prudent buy-and-
hold investor will want to rebalance assets after a substantial market movement.

We argue that the only way to make up for the inability to adapt to market movements is
to offer an enhanced yield on the fixed annuity. Stated differently, a rational investor will be
willing to waive his or her ability to instantaneously rebalance the portfolio in exchange for
an enhanced yield on the fixed annuity. Our definition of liquidity yield is meant to provide
the same level of economic utility for the constrained investors, as the un-enhanced risk-free

asset provides to the unconstrained investor.

TABLE #1 GOES HERE

Table #1 applies our model — which we will fully develop in the next section — to a
particular set of parameters and displays our main result. By static utility we mean the
maximal utility that can be obtained from picking an asset mix and holding it for the entire
horizon. By dynamic utility we mean the Merton (1969) values that arise from rebalancing to
maintain a 50/50 mixz. As one can see from the table, ceteris paribus, a longer time horizon,
lower level of risk aversion and higher subjective growth rate from the market, all appear
to imply a larger liquidity premium for the range of parameters we have investigated. The

next section presents the formal model that was used to generate Table #1.

2 The Utility Model

Our model draws heavily from the classical Merton (1969) framework, and we thus take the

liberty of omitting some stages in the derivation. The unrestricted investor can rebalance



and allocate assets in continuous time between two assets (a.k.a. sub accounts) under the

annuity umbrella. The first is the market (risky, equity) asset that obeys a diffusion process:
dVy = pVidt + oV, d B, Vo=1, 0Zt<T, (1)

where B, is a standard Brownian motion, u is the subjective growth rate of the market, and

o is the subjective volatility. This leads to:

Vp = 6(#—0'2/2)T+O'BT. (2)

We stress the word subjective since the desire to rebalance, and the optimal allocation, will
depend critically on the individual’s assessment of future market returns and volatility.
The second asset is the Fixed Annuity, or the classically labeled risk-free asset, which
obeys:
dA, = rA.dt, Ag=1 <— Ap=¢€7T (3)

In our (simplistic) model, the fixed annuity (bond) pays a constant yield-to-maturity re-
gardless of the time horizon. In practice, of course, one might expect to see a non-flat yield
curve, and, as a result, the return on the Fixed Annuity would be a function of the maturity
of the product. However, our intention is to exclude, or control for, term-structure premium
effects and focus exclusively on liquidity (marketability) issues. As such, we have decided
to operate in a flat curve environment. Our main qualitative results are unaffected by the
introduction of a stochastic term structure model, which would then force us to keep track
of three assets, namely bonds, cash and the variable account.

The end-of-period utility function is of the form:
(1-7)
w
- 1 4
ww)=F—  1#1L 0

and u(w) = In[w] when v = 1. Furthermore, without any loss of generality, we assume the

investor starts with one ($1) unit of account (wealth).
Following Merton (1969), the optimal control problem results in a Partial Differential
Equation (PDE) which leads to the maximal level of (dynamic) expected utility:

1

§A-NT (5)
e b
-

EU*(r|dynamic) = 1

where:
(1 —r)*
202

(6)



In this framework,

* m=r
== 7
Qy 70_2 ()

which we label the Merton Optimum.

In contrast to the dynamic case, a static allocation — which is forced by the liquidity
restrictions — will induce a maturity value of wealth which is the linear sum of the monies
allocated to the two accounts. The expected utility from this static portfolio — with no

liquidity enhancement — is defined as:
EU (r|static) := EU[(1 — a)Ar + aVy] = EU[(1 — a)e’" + aelt=o"/2T+oBr] - (g)
And, by definition of the optimal allocation:
EU*(r|static) < EU*(r|dynamic), (9)

with equality occurring when a* = 1 or when a* = 0. So, we formally define the liquidity
premium A as the enhancement to r that will induce the same level of expected utility. In
other words:

EU*(r + Astatic) = EU*(r|dynamic). (10)

In the static case, the maximal expected utility is obtained via:

1 1-
EU*(r 4 Astatic) = max E {—1 ((1 —a)er VT 4 ae<“—”2/2>T+“BT> 7} . (11)
a -

Now, since Br is normally distributed with mean zero, and variance T', equation (11) can

be re-written as:

>~ 1 1—y
EU*(r + A|static) = max/ T ((1 — )l VT 4 Oze(“_"2/2)T+”‘/T‘”)
@ —co L =7

\/%6_“”2/ 2da.

(12)
In sum, the (maturity dependent) parameter A is the required yield to compensate for illig-
uidity. It is an implicit function of the time horizon T', the coefficient of relative risk aversion
(CRRA) «, and the return generating process parameters r, i, 0. Our objective is to solve
for A.

We note, again, that if the investor has a large amount of exogenous investible wealth

that can be used for rebalancing his or her portfolio, the curvature of the utility function



around the optimum will be much lower, and therefore the demanded liquidity premium will
be lower as well.

Of course, any model that attempts to combine risk preferences, v, and equity market
parameters u, o, comes face-to-face with the so-called equity risk premium anomaly. A large
part of the economics literature is reasonably convinced that v < 3. See Feldstein and
Ranguelova (2001), or Friend and Blume (1975), for example, for estimates in that range.
Likewise, recent work by Mitchell, Poterba, Warshawsky and Brown (1999) in the economic
annuities literature, has employed values ranging from v = 1 to v = 3. Dramatically different
evidence is provided by Mankiw and Zeldes (1991) where v = 35 and Blake (1996) where
~v = 25. And, while a value of v = 1 corresponds with log utility which has appealing growth-
optimal properties, our tables and numerical estimates provide a range of values for high
and low risk aversion levels.

Another thorny issue is that if we use recent (Ibbotson Associates) capital market ex-
perience of p —r = 6%, and 0 = 20%, then equation (7) leads to an equity allocation of
aj = 246% for a log-utility investor, and af = 123% for a (more risk averse) v = 2 investor.
Clearly, these allocations are much higher than what is observed in practice.

Thus, to avoid this problem — while at the same time conditioning on a well-balanced
portfolio — we decided to invert equation (7) and locate market parameters that ‘fit’ the
Merton (1969) model. Specifically, we assume a pre-existing asset allocation o, CRRA
7, and risk premium g — 7, and solve for the (implied) subjective volatility assessment o =
\/m that is consistent with Merton’s optimum. The implied (subjective) volatility,
which is higher than historical values, is motivated by a similar approach in the options
market, and attempts to capture the possible model (jump) risks that are not reflected in
the classical diffusion approach. The ‘adjust the volatility’ approach to using asset allocation,

and specifically option pricing models, originates with the paper by Rubinstein (1994).

3 Solving for the required .

Due to the complexity of equation (11), we are forced to use numerical methods to extract A.
We start by fixing a value for the risk free rate r. Then, for any exogenously imposed value

of the CRRA v and subjective rate of return p, we impute the investor’s subjective volatility
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o from equation (7). For simplicity, consider the case v # 1 (the case of logarithmic utility

v = 1 can be treated similarly). Then we are seeking a value of A such that the maximum of

> 1 2 1- 1 2
Fla,\) = / T— <(1 — a)el™VT  qelhe /2)””‘/7‘”) 7\/_2761 Pdr  (13)

equals U*(r|dynamic). In other words, we are seeking a solution to the pair of equations

F(a, \) = U*(r|dynamic), g—F(a, A) =0. (14)
a

This may be found numerically using Newton’s method, where we alternate Newton steps
in the A and o variables. Basically we solve two equations in two unknowns. We start with
an initial approximation to the solution (ag,A\¢). Then, we do a Newton step as a function
of the first variable (holding the second variable fixed). This gives a better approximation,
denoted by (a1,A\g). Then we hold the first variable fixed and look at it as a function of
the second variable, and do a Newton step again. This gives an even better approximation
(a1,A1). Then we go back to the first variable and get a better approximation (a2,A;), etc.

To carry this out we require expressions for the functions

2
gRApc (15)
But in fact, each of these are easily computed as integrals of simple functions against the
standard normal density function. So to carry this out efficiently, all that is required is a
method of rapid repeated calculation of such integrals. The method of choice is the Gauss-

Hermite integration (see, Press et. al. 1997, Chapter 4), in which a single computation of

nodes x; and weights w; allows one to write

1 T et ~ 3 w; f(x,
E/me ) do = 3w ) (16)

for any regular function f. If the z; are evenly spaced then the above formula would cor-
respond to something like the trapezoidal rule or Simpson’s rule, which is robust but not
particularly accurate unless N is large. But if f is known to be highly smooth, then the
nodes and weights can be tailored to achieve high accuracy with modest values of N. Gauss-
Hermite quadrature makes the approximation of (16) exact for f any polynomial of degree
less than 2N — 1. Once again, Table #1 provides values for A for various (subjective) levels

of p and time horizons T.
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3.1 Comparative Statics.

In Table #2, we display the required liquidity premium, A, as a function of the underlying
interest rate earned by the risk-free rate. As one can see, the greater the interest rate, the
lower is the optimal liquidity premium. Although it might appear from Table #2 that the
interest rate, per se, is what determines the required yield, it is the actual spread between
the expected return from the market, p, and the interest rate that drives this result. Indeed,
with a u = 12.5%, the higher the level of interest rates, the lower is the spread, and thus the

lower is the opportunity cost of not being able to rebalance.
TABLE #2 GOES HERE

Once again, we caution the reader that underlying our result is an equity risk premium
which also affects the opportunity loss. Thus, for example, when unrestricted cash earns
r = 5%, equity is expected to earn p = 12.5%, the investor has a CRRA v = 2, and a pre-
existing portfolio of 50% cash and 50% equity, the implied subjective volatility assumption
is 0 = 31.62%.

Table #3 displays the required liquidity premium as a function of the pre-existing asset
allocation, different return expectations and a variety of high and low risk aversion levels.
Thus, for example, a v = 3 individual with a desired 20% allocation to risky equity, and an
80% allocation to unrestricted cash, will demand a liquidity premium of 35.86 basis points

per annum as compensation for being unable to trade during a 10-year investment horizon.
TABLE #3 GOES HERE

As one can see from Table #3, the relationship between desired (or pre-existing) equity
holdings, and the demanded liquidity premium resembles an inverted parabola, and is zero
at both ends. The intuition is as follows. A rational individual with a desired (or pre-existing)
allocation of either, 0% or 100% unrestricted cash, will not be engage in any trading during
the length of the investment horizon (with probability one) since there will never be a need
to rebalance. However, as the portfolio moves towards a more balanced composition, the
probability and magnitude of rebalancing increases, thus magnifying the required liquidity

premium for not being able to trade.
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The same inverted-parabolic relationship exists for higher levels of risk aversion, but
in a decreasing manner since the opportunity cost of not being able to trade is lower. For
example, one sometimes finds relatively high values of the risk aversion parameter ~ in use.
For example, Blake (1996) has estimated CRRA values as high as v = 25 in the UK. Thus,
if we were to take v = 25, for example, then the only way a dynamic allocation of o = 50%
could be rational would be if the individual’s estimate of future volatility was particularly
low, in which case there is less difference between the risky asset and the risk-free one, so
the liquidity premium should also be low. This is indeed the case. To get a sense of the

magnitudes, if © = 15% and T = 10, we compute A = 3.75 b.p.

TABLE #4 GOES HERE

Finally, Table #4 provides a different perspective on the results. We start by fixing the
level of p,r and o, and then solve for the optimal static allocation o* and liquidity premium
A, as a function of risk aversion 7. We contrast these numbers with the classical Merton
(1969) allocation. We used historical values of r = 5%, u = 11% and o = 20%, which are
consistent with Ibbotson Associates (2001) numbers. As in Table #3, the liquidity premium
is not monotone. When CRRA is small, the Merton allocation to equities is near 100%, and
when CRRA is large, the Merton allocation is near 0%. In either case the liquidity premium
will be small, since there is little rebalancing in the liquid portfolio. The liquidity premium is
largest when CRRA takes some intermediate value, in this example at about v = 2.7. This,
once again, is consistent with our main observation that individuals with a well diversified
(but small) investment portfolio and a relatively low level of risk aversion will demand the

highest liquidity premium.

3.2 Comparison to Longstaff’s Model.

While we took a similar approach to computing the welfare loss for liquidity restrictions, our
paper differs from Longstaff’s 2001 work in a number of substantial ways. First, our model
assumed a general constant relative risk aversion (CRRA) utility specification, in contrast
to Longstaff’s logarithmic utility model. This allowed us to explore the critical impact of

risk aversion on the value of liquidity, as well as the effect of holding period restrictions.
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Indeed, as Tables 1-3 indicated, risk aversion played an important role in determining the
required liquidity premium. Ceteris paribus, the greater the aversion to risk, the lower is
the required liquidity premium, holding asset allocation constant. Also, while Longstaff
modeled illiquidity in a stochastic volatility environment, and used trading strategies that
were of bounded variation, we operated in a much simpler Merton (1969) environment,
which allowed for closed-form solutions to the optimal portfolio holdings. (We traded-off
stochastic volatility for general utility.) Our liquidity premium — which was formulated as
a yield, as opposed to Longstaff’s discount — was obtained by solving a one dimensional
integral equation.

However, the most important distinction with Longstaff (2001) was that we focused on
the individual’s pre-existing portfolio and asset allocation as a determinant of the liquidity
premium. As one can see from Table #3, an individual with a very low, or very high, level
of holdings in the illiquid bond (annuity) would not require as much compensation as the
individual with a relatively well-balanced portfolio. The liquidity premium is directly related
to the probability (and magnitude) of having to trade and rebalance during the life of the
restriction. If the pre-existing optimal portfolio is well-balanced —i.e. close to equal amounts
of equity and cash — there is a higher chance of the portfolio falling out of balance, and thus
requiring trading to move back to the optimum.

As such, our conclusions complement Longstaff (2001), in that we concur that “discounts
for illiquidity can be substantial”, but we also demonstrate that the magnitude depends on

the individual’s risk aversion and pre-existing portfolio.

4 Payout Annuities and Longevity Insurance

Within the universe of annuities, the natural context for the foregoing section is the accu-
mulation phase, during which contributions are held and invested prior to retirement. We
now turn to the payout phase of the life annuity in order to illustrate the applicability of the
technique in the context of a random maturity. We assume that this involves the purchase
of an immediate life annuity at time ¢ = 0, entitling the holder to a continuous stream of
payments, terminating upon death, which is now a random time ¢ = T.

The payout annuity can be some combination of a fixed immediate annuity (FIA), which

14



provides a fixed payment per unit time, and a variable immediate annuity (VIA) which
provides a payment per unit time that varies depending on the value of some market asset
V;. If w dollars of the FIA are purchased, the consumer is entitled to continuous payment

stream of C" = w/a,(r) dollars per unit time, where the unit price of the FIA is:

a(r) = /000 e " (ipg)dt. (17)

Here r denotes the risk-free interest rate, and (;p,) is the probability that the individual will
survive to time ¢, conditional on being alive at the annuity purchase age x. The normalization
is that each unit of the FIA pays $1 per unit time.

Likewise, if w dollars of the VIA are purchased, the consumer receives payments based
on w/a,;(h) units of the market asset per unit time, where h is the assumed interest rate
(AIR). In other words, at time ¢, payments accumulate at the rate of CY = we "V, /a,(h)
dollars per unit time, where we have normalized the market asset so that V5 = 1.

As before, we will compare liquid and illiquid annuities. In the liquid case, the consumer
is free to exchange FTA units for an economically equivalent number of VIA units at any
time, and vice versa. In the illiquid case, the number of FIA and VIA units is fixed at the
time of purchase. Other things being equal, the liquid annuity would provide greater utility
to the consumer, so to compensate for this the illiquid annuity must provide an enhanced
rate of return. As in the preceding section, we assume that it is the FIA that is so enhanced.
In this context, we take this to mean that an investment of w dollars in the FIA produces
a payment stream of Cf' = w/a,(r + )\) dollars per unit time, where )\ is the demanded
liquidity premium.

We will assume that the AIR is chosen to be the risk-free rate, so that h = r. Such a
restriction is not uncommon in annuity products available for sale, and is in fact typical of
the liquid ones.

In the preceding section the consumer’s utility involved only end-of-period wealth, since
there were no funds available for consumption prior to that time horizon. In the present
case, it is exactly the utility of consumption that is of interest, discounted to take account
of time preferences. Thus, if C; denotes the payment stream generated by the life annuity,

and if the function u(.) denotes the consumer’s personal utility of consumption, then the
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mix between the fixed and variable annuities will be selected so as to maximize:

E [ /0 ' e""tu((]t)dt} _ /0 e (pe) Eu(Cdt, (18)

where T is the random time of death, and assuming independence of asset returns and
mortality.

As before, we will assume an optimal 50/50 mix between the fixed and variable annuities
in the liquid case, and then impute model parameters. As we illustrated quite extensively in
section 3, the technique can be used for any pre-existing asset allocation. We have selected
one particular mix to contrast the deterministic horizon results with their stochastic analogue
in the payout phase. We continue to assume geometric Brownian dynamics for the risky asset
Vi, so

dVy = pVidt 4+ oV, d By, Vo=1 (19)

Consistent with our results in Table #4, we use historical capital market values to obtain
the implied asset mix as a function of risk aversion. Charupat and Milevsky (2002) consider
the asset allocation problem in the setting of liquid annuities. Assuming h = r, and an

exponential or Gompertz mortality function, they show that the Merton optimum

* w—=r
af = po; (20)

remains optimal in this new setting. In fact this can be proved more generally — and is
actually alluded to in Chapter 18 of Merton (1994) — and does not depend on the parametric
form of the survival probabilities (;p,). Denote by ¢; and 1); the number of units of the
FIA and VIA held at time ¢, and assume that h = r. Then the payment stream is C; =
¢ + e "V, and it can be shown that the optimal choice of ¢; and 1; obeys:

o YeeVe b
o1 + PV, o R N 7/

(21)
for o* as above. In particular, from the assumption that a* = 50%, and the given (Ibbotson
Associates) values for p,r and o, we may impute a CRRA value of 7 = 3, regardless of the
form of the conditional probability of survival (;p,). In other words, if the individual has a
coefficient of relative risk aversion of v = 3, and is faced with a market in which the expected

return from the risky asset is u = 11%, with a volatility of o = 20%, when the risk free rate

is 7 = 5%, then he/she will allocate exactly o = 50% to each of the two asset classes.
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It can further be shown that with this choice of allocation,

Plu(C)] = == (‘;’>) - (22)
where
A=) (=)™
g- L (23)
Thus:

w0 ay(r — )
1— 7 ay(r)0="’

U* :/ e " (y1pe) Elu(Cy)]dt =
0
in the dynamic liquid case.
In the static (illiquid) case, an initial allocation of « to the risky asset will result in

holding ¢; = (1 — a)w/a,(r + \) FIA units, and ¢, = aw/a,(r) VIA units, and in a utility:

Fla,)) = / " e (o) Elu(C)ldt

- = 1—« aelh—r—0?/2)t+ov/tz =
= e " (1P +
[ e [ 1= (arey )

e 2 dzdt (25)

X

1
V21
Our goal is, as before, to find the liquidity premium A such that maximizing F'(c, \)
over a reproduces the dynamic utility U*(r|dynamic). We will do so assuming Gompertz
mortality, corresponding to an exponentially increasing hazard rate (force of mortality) of
the form:

1

(m, b) are the Gompertz parameters and z is the individual’s age at the time of purchase.

In this case the survival probability takes the form:

(tpz) = exp (bhg(1 — et/b)) : (27)

As before, we use Newton’s method to carry out the maximization and root finding, and we
use Gauss-Hermite quadrature to rapidly evaluate the Gaussian integral in the expression
for F(a, A). We carry out the time integral using a related method, namely Gauss-Laguerre
quadrature. As in formula (16), the Gauss-Laguerre nodes and weights z; and w; are opti-

mized for computing integrals of the form:

/000 e M f(t)dt ~ Z w; f (x;) (28)
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where f is well approximated by a polynomial function. We use ¢ = 0 and must be careful
to choose a in a narrow range of values for which the method is stable when applied to our
integrands. But having done so, this gives a rapid and accurate algorithm.

We consider two cases, both corresponding to an age of 62 years at the time of annu-
itization. The first uses Gompertz parameters fit to the U.S. Society of Actuaries female
(IAM1996) mortality data (namely b = 8.78 and m = 92.63) and yields an optimal allocation
of a = 48.40% and a liquidity premium of A = 13.07 basis points. In the second case we use
male mortality parameters b = 10.5 and m = 88.18, and compute a = 48.50 and A = 12.52
b.p.

To understand the factors influencing these results, one can calculate the conditional
life expectancy, resulting in figures of egy = 26.62 years (female) and egy = 22.78 years
(male). Using those time-horizons in the fixed maturity problem of the previous section gives
a = 47.68%, A = 24.22 b.p., and o = 47.93%, A = 21.87 b.p. respectively. These premiums
are substantially higher than the Gompertz figures just computed, and a moment’s reflection
will spot the reason why. We saw that the liquidity premium increases rapidly with the time
horizon, and in the annuity context most of the payments occur significantly earlier than the
lifetime itself. Thus the effect of spreading payments out over the residual lifetime should
be to reduce the liquidity premium. Indeed, even if the residual lifetime were to take on a

deterministic value 7', the mean time a payment is received is

e T

Thus to appreciate the sensitivity of the results to the randomness of the life horizon T, we
should not compare with the results of the preceding section, but rather with other lifetime
distributions having the same means. As an extreme case, we compare the Gompertz results

with deterministic lifetime distributions, that is, with survival functions

1, t<ty
(tp2) = (30)
0, t>t

where ¢ is set to the mean residual Gompertz lifetimes. Because of the discontinuity in
(1pz) we use yet another quadrature method, namely Gauss-Legendre which is optimized
for integrals of the form foto f(t)dt. This gives optimal allocations of o = 48.48% (female)
and o = 48.63% (male), and liquidity premiums of A = 13.02 b.p (female) and A = 12.20
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(male). These premiums are extremely close to those obtained under Gompertz mortality,
which suggests that the premiums are not highly sensitive to the precise form of the hazard
rate. Note, however, that both Gompertz figures are slightly higher, and it is tempting to

describe the difference as a small additional premium for mortality risk.

5 Conclusion.

This paper has argued that the value of liquidity, or the lack thereof, can be assessed by re-
turning to basic ‘Mertonian’ (1969) principles. We define liquidity premium as the demanded
enhancement to the risk-free rate which compensates for the inability to continuously rebal-
ance an investment portfolio due to institutionalized restrictions. In other words, a liquidity
premium added to an illiquid product should produce the same level of utility as the unre-
stricted product without the liquidity premium. While we formulated our model within the
context of a fixed savings or payout annuity — which traditionally is associated with sub-
stantial liquidity restrictions — our model can be applied more broadly. Our economic model
led to an interesting mathematical problem, which was to locate the yield A that equated
maximal utility in a static portfolio to the (greater) utility from a portfolio that could be
dynamically rebalanced in a Merton framework.

Our main results are as follows: We find that a log-utility (y = 1) investor, with a
pre-existing 50/50 asset mix between fixed and variable savings annuities, would demand a
liquidity premium of between 25 and 155 basis points per annum — depending on his or her
expected return from the equity market — as compensation for the inability to rebalance a
portfolio during a 10-year period. However, if the same investor has a pre-existing asset mix
which consists of 90% variable and only 10% fixed annuities, the required premium drops
to between 5 and 40 basis points, depending on future market expectations. Furthermore,
for investors that are more risk averse (y > 1), and/or who are faced with shorter liquidity
restrictions, the compensating liquidity premium can be much lower. Indeed, for a 1 year
period, and coefficient of relative risk aversion (y = 3) the premium ranges from only 2 - 8
basis points per annum above the risk-free yield. As such, we are careful to conclude that
the question of liquidity is personal in nature, since it depends on attitudes towards financial

risk, current portfolio holdings and subjective expectations about future investment returns.
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However, regardless of the magnitude of this effect, our paper does find that impeding
a consumer’s ability to periodically rebalance his or her investment portfolio is detrimental
to their economic well-being, (utility) even if they have no expectation of doing so. This is
regardless of their pre-existing asset allocation, investment time horizon or subjective market
expectations.

Finally, research currently underway by the authors will attempt to develop a model
in which only one-sided trading restrictions are imposed so that additional assets can be
purchased, but not sold. We anticipate the liquidity premium will be lower in this case, but

the amount by which it is reduced remains an open question.
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Table #1: Required Liquidity Premium Spread, in basis points, per annum.

Assuming a desired 50/50 allocation to (risky) equities and (safe) cash earning 5% p.a.

UW =w*9 /- g)

Coefficient of Relative Risk Aversion

T =15 Years
m = 12.5% 62.29 3459 23.92
m = 15.0% 98.66 55.73  38.76
m=175%  139.34 79.80 55.75
m=20.0% 183.36 106.24 74.48

Coefficient of Relative Risk Aversion

T =10 Years
m=12.5% 47.56 25.84 17.74
m = 15.0% 77.04 42.50 29.33
m=17.5% 110.78 61.90 42.90
m = 20.0% 147.98 83.59 58.14

g=1 g=2 9=3
T =5 Years
m=12.5% 28.10 14.80 10.05
m = 15.0% 47.04 25.07 17.09
m=17.5% 69.54 37.44 25.62
m = 20.0% 95.12 51.68 35.47
g=1 g=2 g=3
T=1Year
m=12.5% 6.67 3.38 2.27
m = 15.0% 11.67 5.94 3.98
m=17.5% 17.95 9.17 6.16
m = 20.0% 25.45 13.05 8.78

Notes: For example, an investor with a 50/50 allocation to equities and cash, with CRRA =1 (a.k.a. log utility) preferences,

would require a yield enhancement (lambda) of 77 basis points on the cash account (l.e. 5.77%) to compensate for the inability
to rebalance for 10 years; this is assuming they expected the equity account to earn 15% p.a. during this period.
In contrast, if the investor expects to earn 17.5% from the equity account, they would require a 111 basis point liquidity spread.
Likewise, for a fixed 50/50 allocation and the same (subjective) equity return, a higher CRRA (l.e. a more risk averse investor),

requires less compensation for the inability to rebalance




Table #2

Liquidity premium as a function of the risk-free interest rate,
conditional on a 50/50 allocation to Equities vs. Cash,

and assuming an equity return expectation of 12.5%,

over a 10-year investment horizon.

Interest CRRA=1 CRRA=2 CRRA=3

4% 58.77 32.14 22.11
5% 47.56 25.84 17.73
6% 37.21 20.07 13.74
7% 27.81 14.89 10.16

See Notes to Table #1




Table #3

Liquidity premium as a function of asset allocation,
Equities (risky asset) vs. Cash (safe asset).
Assuming cash earns 5%, a 10-year horizon

and an expected return from equity of:

Equity % CRRA=1 CRRA=2 CRRA=3 CRRA=5 CRRA=10 CRRA=25

0 0.00 0.00 0.00 0.00 0.00 0.00
10 47.92 39.00 31.44 22.17 12.58 5.44
20 74.12 48.74 35.86 23.34 12.43 5.17
30 82.38 49.45 35.18 22.26 11.60 4.76
40 82.11 46.87 32.74 20.41 10.51 4.28
50 77.04 42.50 29.33 18.10 9.25 3.75
60 68.60 36.83 25.16 15.40 7.82 3.16
70 57.29 29.97 20.28 12.32 6.22 2.50
80 42.96 21.84 14.63 8.80 4.41 1.77
90 24.79 12.11 8.00 4.76 2.36 0.94
100 0.00 0.00 0.00 0.00 0.00 0.00

Liquidity premium as a function of asset allocation,

Equities (risky asset) vs. Cash (safe asset).

Assuming cash earns 5%, a 10-year horizon

and an expected return from equity of:

Equity% CRRA=1 CRRA=2 CRRA=3 CRRA=5 CRRA=10 CRRA=25

0 0.00 0.00 0.00 0.00 0.00 0.00
10 20.87 14.69 11.11 7.40 4.01 1.69
20 27.09 16.24 11.55 7.31 3.81 1.56
30 27.66 15.61 10.86 6.75 3.47 1.41
40 26.14 14.26 9.80 6.03 3.07 1.24
50 23.52 12.53 8.55 5.22 2.65 1.07
60 20.16 10.54 7.14 4.34 219 0.88
70 16.18 8.31 5.59 3.38 1.70 0.68
80 11.58 5.83 3.90 2.34 1.17 0.47
90 6.28 3.09 2.04 1.22 0.61 0.24
100 0.00 0.00 0.00 0.00 0.00 0.00

See Notes to Table #1




Table #4

Liquidity premium AND asset allocation as a function of relative risk aversion
Equities (risky asset) vs. Cash (safe asset).
Assuming cash earns 5%, a 10-year horizon, historical volatility of 20%
and an expected return from equity of 11%

CRRA=1 CRRA=2 CRRA=3 CRRA=5 CRRA=10 CRRA=25
Merton Allocation 150.00% 75.00% 50.00% 30.00% 15.00% 6.00%
Constrained Allocation N.A. 75.27% 48.93% 28.35% 13.72% 5.37%
Liquidity Premium (b.p.) N.A. 10.05 11.90 9.31 5.40 2.33

With CRRA=1 the investor holds no fixed annuities so the constrained allocation and liquidity premium is N.A.

Using historical parameters, the liquidity premium peaks at a CRRA of approximately 2.73, with a value of 12.02 b.p.
In addition, see Notes to Table #1 for explanations






