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The Real Option to Lapse and
the Valuation of Death-Protected Investments

ABSTRACT

Variable Annuity (VA), similar to their mutual fund cousins, are managed
pools of investments whose gains are tax-deferred. In addition, they provide
money-back guarantees on invested principal. These guarantees — which can
be viewed as non-separable put options with a possibly increasing strike
price — are structured to mature upon death of the contract owner and/or
at a pre-specified time horizon. The protection is paid for by installments —
as opposed to up front — and is funded with a proportional insurance charge
that is deducted from the underlying fund on a periodic basis.
Of great importance — and critical to any formal analysis of this product

— is the fact that the holder can lapse the contract and instantaneously repur-
chase an identical investment to reestablish a new basis for the guarantee. In
the absence of transaction costs, this would be optimal each and every time
the value of the account reaches a new high. We classify this strategy as the
Real Option to lapse. In this paper we analyze this product, by focusing on
the optimal time to exercise the Real Option to lapse.
Our paper’s conceptual contribution lies in highlighting the critical im-

portance of the deferred surrender charge (DSC) — essentially transaction
costs — in completing the market and allowing the claim to be hedged. Tech-
nically, we formulate the valuation exercise as a optimal stopping problem to
provide a closed-form analytic solution and complete analysis when hazard
rates are constant. Some numerical examples are provided to confirm that
most annuity vendors are substantially overcharging for this guarantee.
JEL Codes: G13, G23, D91, G22
Keywords: Optimal control, option pricing, insurance.
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1 Introduction.

Most of the existing literature on derivative pricing — starting with Black-
Scholes/Merton (1973) — tacitly assumes that the price of an a option will
be paid in advance, at the time of acquisition. In practice, however, many
financial and especially insurance contracts, that contain embedded options,
are purchased by a series of installments. So, in fact, a very minor payment
is made up front, and the remainder is due over an extended period of time.
Sometimes, the magnitude of the installment payments themselves is propor-
tional to the value of the underlying security on which the option is written.
Clearly, it is incorrect to amortize the cost of the option over the (expected)
life of the contract. This is because the installment plan endows the holder
(long position) with an additional Real Option1 to terminate payments, or
lapse the contract without having paid the full value of the embedded option
to the seller (short position). Most likely — and rationally — the contract
will be lapsed, or terminated, when the embedded options are out-of-the-
money. Exercising this option is akin to defaulting on a swap contract when
it becomes a liability, or a corporation abandoning a mine when it becomes
uneconomical, although with less distasteful legal (and ethical) consequences.
One of the most common example of this personal abandonment option

occurs with (tax sheltered) Variable Annuities, in the U.S. and Segregated
Funds in Canada. These insurance-based products are quite similar2 to their
mutual fund cousins, in all financial, legal and accounting aspects, except
that they contain an additional money-back guarantee (to the estate or heirs)
upon death, or at some fixed horizon3. If the fund has lost money — net of
any withdrawals — the insurance company will refund the difference. In fact,
it is now possible to purchase almost any well known mutual fund product,

1We are using the term real option in the personal, as opposed to corporate finance,
sense of word. This is strictly different from the classical use of the term in the litera-
ture. We refer the interested reader to the work by Berk (1999), Amram and Kulatilaka
(1999), Trigeorgis (1996), Ross (1995), Ingersoll and Ross (1992) and Hubbard (1994) for
additional information about real options.

2The raison detre of the Variable Annuity (VA) is the convenient deferral of taxation
on all investment gains until the funds are withdrawn or annuitized. In this paper we will
not concern ourselves with the tax aspects of the product, other than to mention that one
can, in fact, lapse a VA contract, and purchase another one, without incurring any tax
consequences.

3The insurance lingo for this feature is a guaranteed minimum accumulation benefit
(GMAB) which is available as an additional rider on most variable annuity policies.
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with, or without, the added insurance protection. The embedded protection
is paid for by installments — as opposed to up front — and funded via a
continuous insurance charge that is deducted from the underlying fund on
a periodic basis. In other words, the management fees are higher on these
products, compared to regular mutual funds.4 The size of this market is not
trivial. According to recent estimates by Moody’s, there is approximately
$1 trillion U.S. invested in variable annuity policies with explicit maturity
guarantees. In fact, Moody’s recently issued a ‘special comment’ which was
entirely devoted to the risks of these products.5

The impetus for our paper, is that the holder of these products — collec-
tively known as Maturity-Protected Investments (MPIs) — can at any time
sell and then repurchase the investment to reestablish a new basis for the
guarantee. This, in theory, would be optimal each and every time the value
of the account reaches a new high. By continuously engaging in this out-
and-in transaction, the individual could theoretically convert a money back
guarantee (i.e. a vanilla put) into a highest-value-achieved (i.e. lookback
put option) guarantee. Of course, transaction costs, in the form of loads and
surrender charges complicate this simple scheme, which is the essence of our
analysis. We classify this feature as the Real Option (RO) to lapse.
For example, assume that a contract owner, who is 55 years old, invests

$10,000 in a variable annuity with a basic money-back guarantee at death,
or in ten years, whichever comes first. The guarantee is funded with an
additional 100 basis points annual fee that is charged to assets on a daily
basis. If, for example, the investment doubles in value to $20,000 over the
next year, the contract owner is still paying 100 basis points for a put option
which is out-of-the-money by 50%. Clearly, there is a huge incentive to sell
the fund, and then re-purchase the exact same investment, to re-establish the
guarantee at the new $20,000 level. The companies providing the guarantee
are aware of this and therefore impose a contingent deferred surrender charge
(DSC) to ‘force’ investors to stay in the fund, or at the very least recoup
some of the costs if investors decide to lapse. Even so — and despite the
transaction costs — it may be optimal to swap the old out-of-the-money put, in

4According to Morningstar Inc., the average expense ratio on the universe of 8,200 U.S.
mutual funds is 137 basis points, while the 6,600 variable annuity sub-accounts have an
average expense of 211 basis points. The 74 b.p. difference can be viewed as payment for
the option.

5See Bells and Whistles: Credit Implcations of the New Variable Annuities. Moody’s
Investors Service, October 2000.
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a exchange for the new at-the-money put. This paper will derive the optimal
lapsation policy, in the presence of a particular DSC schedule as well as
the appropriate continuous insurance charge that funds the maturity/death
guarantee. Our paper links the DSC, the continuous insurance charge and
the optimal lapsation strategy in a parsimonious and tractable manner.
From an academic point of view, a large and diverse body of research

has been published over the last 20 years on the topic of maturity-protected
investments. In the finance and insurance literature these products have
been analyzed under the title of equity-linked, or unit-linked, insurance poli-
cies. The landmark contribution in the field, was the Brennan and Schwartz
(1976), or Boyle and Schwartz (1977) extension of the Black-Scholes/Merton
formula (1973) to equity-linked insurance contracts. They assumed a market
that is complete in both financial and mortality risk. Therefore, all derivative
prices can be expressed as suitable expectations with respect to an appro-
priate probability measure. Building on the complete markets framework,
various researchers extended the analysis to stochastic interest rates and ex-
otic payoff structures. See, for example, Bacinello and Ortu (1993, 1996),
Ekern and Persson (1996), Nielsen and Sandman (1996), Persson and Aase
(1997), Aase and Persson (1994) as well as Miltersen and Persson (1999).
Without exceptions, all of the above mentioned papers on equity-linked in-
surance have focused on locating the single initial premium that funds, or
pays for, the maturity benefit. In practice, of course, the guarantee is al-
ways paid by installments, which, as we have argued, completely changes
the nature of the problem. More recently, and more practically, Windcliff,
Forsyth and Vetzal (2000), as well as Boyle, Kolkiewicz and Tan (1999) have
looked at the ‘reset’ features available in some of the variable annuities using
Monte Carlo and numerical PDE approaches. Milevsky and Posner (2000),
provided theoretical and empirical evidence on the cost structure of variable
annuity contracts.
Of course, within the context of insurance, a complete market assumption

implies that vendors can completely diversify their mortality risk by selling
enough policies. In contrast to these assumptions, our main argument is
that when option premiums are paid by installments — even in the presence
of complete mortality and financial markets — the ability to ‘lapse’ de facto
creates an incomplete market in which the contingent claim can not be hedged.
Therefore, to salvage the hedge, our theoretical contribution is to identify
the contingent deferred surrender charges (DSC) — properly calibrated to the
optimal lapsation policy — that will complete the market.
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Usually, one thinks of transaction costs, commissions and trading fees as
impediments to pricing via risk-neutral expectations. Indeed, theoretical re-
search by Garman and Ohlson (1981) and Dermody and Rockafellar (1991)
as well as empirical work by Ronn (1987) has shown that ‘frictions’ induce a
multitude of non-unique valuation operators, which is the essence of incom-
plete financial markets. In contrast, we will demonstrate that our particular
contingent claim can only be hedged in the presence of a ‘friction’, which is
the contingent deferred surrender charge (DSC). This is not unlike the ideas
introduced by Dammon and Green (1987), and Prisman (1986), where tax
(frictions) can induce equilibrium in the bond market.
From a slightly different perspective, our research is similar to Geske’s

(1979) compound option, or Carr’s (1988) sequential exchange opportunity
where the holder is granted the right (but not the obligation) to acquire
another option at some future point in time. In our case, the contract owner
has the right to continue holding the fund — while paying additional expenses
— and maintaining the ‘old’ money back guarantee. Likewise, our problem
can also be positioned within the context of the vulnerable (defaultable)
options literature, for example Johnson and Stulz (1987), but where the
default emanates with the buyer, instead of the seller.
The technical contribution of this paper is to formulate6 the personal

lapsation decision as an optimal stopping problem. The Real Option is then
valued as an American contingent claim, with the strike price being equal to
the underlying account value net of any deferred surrender charges. From
that point, standard American option pricing techniques, such as Jack (1991),
Kim (1990), or Huang, Subrahmanyam and Yu (1996), or the more recent
Ju (1998) or Carr (1998), can be applied to locate the optimal lapsation
boundary, and by inversion, the proper continuous insurance charge.
Conveniently, when the population hazard rate is assumed constant over

time (exponential death) the free-boundary problem can be simplified a la
McKean (1965), and the corresponding ODE can be solved, to obtain closed
form analytic expressions for all quantities of interest. We provide expressions

6Optimal stopping techniques, vis a vis the decision to surrender or lapse an insurance
contract, have been employed in the academic literature. See for example Grosen and
Jorgensen (1997) as well as Albizzati and Geman (1994). However, the options analyzed in
those papers involve explicit interest rate guarantees that are added to insurance products
and therefore more properly treated as financial option, rather than Real Options. More
importantly, in contrast to those papers, our guarantees are paid by installments, which
is the essence of our market incompleteness problem.
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for the optimal level at which to lapse the contract, assuming a fixed asset
and deferred surrender charge.
By means of an example we pre-empt our numerical results with the fol-

lowing case study; assuming the current 6% interest rate environment. A
60 year-old individual, with a life expectancy of 20 years7, that purchases
a death-protected mutual fund with a (historical broad-based U.S. equity)
volatility of 20%, an additional continuous insurance charge of 30 basis points
per annum, and a 2% contingent deferred surrender charge, should optimally
lapse the contract as soon as the account appreciates by exactly 57%. The
owner should sell the position — incurring the 2% DSC — and then repurchase
the exact same contract, which obviously generates a new at-the-money guar-
antee. From the insurer’s point of view, if the population exercises too early,
the insurer pockets more surrender charges than are needed to cover the
hedge. If the population exercises too late, then its guarantee — at least for a
time — is at a lower level than the insurer is hedged against. So, when people
die, the insurer does not have to pay out as much.
Stated differently, a 30 basis point continuous insurance charge together

with a 2% contingent deferred surrender charge will completely fund the
money back guarantee. However, the same model also indicates that if the
insurance company charges less than 16 basis points for the guarantee, the
mortality-contingent claim is essentially un-hedgeable, regardless of how high
the contingent deferred surrender charge is set. Finally, if the insurance
company charges more than 167 basis points for the guarantee, regardless of
how low the deferred surrender charge is set, a rational individual will never
purchase the product.
The remainder of this paper is organized as follows. Section 2 will intro-

duce notation, terminology and then derive the general model for the optimal
lapsing time and the value of the American contingent claim. Section 3 con-
tinues by making some specific assumptions about hazard rates and maturity
guarantees which then allows for a closed-form analytic solution. Section 4
provides some numerical examples, while Section 5 concludes the paper with
some general remarks and directions for further research. All technical proofs
are relegated to the appendix.

7This is according to the U.S. Decennial Life Tables for 1989-1991, complied by the
U.S. Department of Health and Human Services in conjunction with the National Center
for Health Statistics
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2 The General Model

2.1 Underlying Asset and Dynamics

The contract owner pays exactly $1, at time t = 0, to acquire a long position
in the mutual fund, together with a non-separable increasing-strike put op-
tion that matures at min[τ, T ], where τ is the stochastic time of death and
T is the maturity of the guarantee, if any. In other words, the put option
guarantees at least egt, g ≥ 0 at time T , or at death, whichever comes first.
Of course, we can let T = ∞, which implies a guarantee at death only. In
the most general formulation, the physical price process for the underlying
asset obeys:

dUt = (µt − αt)Utdt+ σ(Ut, t)dBt, U0 = 1, (1)

under the statistical (or actuarial measure), where Bt is a standard Brownian
motion, µt is the drift rate, net of any non-insurance management fees, and
αt is the to-be-determined continuous insurance charge that ‘pays for’ the op-
tion. The variable αt can be viewed as a dividend yield outflow. Of course,
the dividend does not go to the fund holder, but to the insurance company.
In fact, actual dividends are assumed to be completely re-invested in the
fund, and are therefore absorbed in µt. Nevertheless, the continuous-time
payment αtUt flows to the insurance company providing the maturity/death
guarantee. In practice, the underlying fund consists of a collection of indi-
vidual securities, each following its own diffusion process. Without any loss
of generality, we will simply focus on the mutual fund value Ut, and assume
that it can be treated as a single asset.8

The risk neutral process for the mutual fund, which we use for our com-
putations, is:

dUt = (rt − αt)Utdt+ σ(Ut, t)d eBt, U0 = 1, (2)

where rt is the risk-free short rate, that replaces the drift, and eBt, is the
Brownian motion under the new (Girsanov-transformed) measure.
One can also think of the underlying process Ut as:

Ut = StAt, where At = e
− R t0 αsds (3)

8Technically speaking, there is an element of a ‘passport option’ — see Shreve and Vecer
(2000) for recent details on these option — since the holder can re-allocate the individual
sub-accounts to increase the value of the guarantee. We ignore this problem at a first pass.

8



and St is the market value of the assets supporting the fund. In other words:

dSt = rtStdt+ σ(St, t)d eBt, S0 = 1 (4)

Finally, we let:

Rt = e
R t
0 rsds, (5)

denote the standard money market account, where rs is defined as above.

2.2 Lapsation and Deferred surrender Charges.

The owner can lapse or surrender (read: sell) the contract at any time t <
τ ≤ T, and immediately receive an amount (1−kt)Ut, where 0 ≤ kt < 1. The
deterministic function kt represents the contingent deferred surrender charge
(DSC), which also goes directly to the company insuring the contract. One
can think of the deferred surrender charge kt, as both an incentive to remain
invested in the contract, and, more importantly, as a mechanism for funding
the put option. Intuitively, one can think of kt as back-up for αt, in the event
the owner lapses before the original option has been fully paid for. Clearly,
at the extreme, if kt = 1, the owner will never lapse and the ‘full’ αt will be
collected for the entire life of the product.
Practically speaking, our model will locate the minimal (suitably de-

fined) DSC needed to cover a fixed (suitably defined) αt continuous insurance
charge, as well as the minimal αt required to fund the guarantee, in the pres-
ence of a fixed DSC. Indeed, as we shall prove later, if we assume a kt = 0,
for all t ≥ 0 — in other words, no deferred surrender charges — there is no
viable continuous insurance charge αt that will fund the put option. In other
words, if kt = 0, then the only αt that will fund the guarantee is so high
that the buyer’s rational policy will be to lapse immediately. Such a product
is not economically viable. Likewise, there is no deferred surrender charge
schedule that can compensate for an αt = 0. A policy of not lapsing will
simply leave no revenue with which to fund the guarantee. Both the deferred
surrender and the continuous insurance charge are critical for completing the
market and to properly hedge the contingent claim.
In particular, in the case of exogenously imposed constant values for the

surrender and continuous insurance charge, our model will identify the (α, k)
‘curve’ that completely funds the guarantee. Any combination of parameters
along this curve will result in a viable product. This curve will also induce
lower and upper bounds for α, denoted by αL and αH respectively, outside
which the product is unsustainable. More on this in section 4.
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2.3 The Maturity and Death Guarantees

Let G(Ut) = max[egt, Ut], g ≥ 0 denote the guaranteed amount. The fund
payoff can therefore be described as follows:

Payoff =

 (1− kt)Ut if Lapsed.
max[egτ , Uτ ] at Death (t = τ)
max[egT , UT ] at Maturity (t = T )

(6)

The formulation in equation (6) is general enough to include cases with no
maturity guarantee — such as with variable annuity policies in the U.S. — in
which case we set T = ∞. Nevertheless, the following stylized facts should
be evident from the structure of equation (6) First, our model assumes that
all possible surrender charges are waived upon death. In other words, it is
never optimal to lapse ‘an instant’ before death9 since max[egτ , Uτ ] is strictly
greater than (1−kτ )Uτ , whenever kτ > 0. Second, in the event of a time−T
maturity guarantee, the money back guarantee implies that kT = 0 and
all surrender charges are eliminated. Note that we do not require kt to be
continuous at t = T.
Finally, it is very important to note that the actual word ‘lapsation’ can

imply two very different activities. Lapsation can be rational, when it is
immediately followed by a re-purchase and solely conducted to re-establish
the basis of the guarantee. And lapsation can be irrational, when the deferred
surrender charge ‘penalty’ exceeds the value of the new option. Regardless
of whether lapsation was rational, or not, the payoff (or value) at the time of
lapsation will always be (1− kt)Ut. Our intention is to locate the situations
where it is rational to incur the ktUt ‘penalty’ for the sole purpose of re-
acquiring the contract and resetting the level of the guarantee. Our model,
as it currently stands, does not account for consumption or other liquidity
needs that would induce people to lapse for reasons other than swapping an
old option, for a new one. As such, we stress for one final time that our
optimal lapsation strategy means the optimal strategy for re-establishing the
basis. Clearly, though, there is nothing irrational about withdrawing funds
from an investment account, in order to fund general consumption needs.

9Note, however, that in practice, estate taxes might create an incentive to lapse the
contract ‘an instant’ prior to death. Needless to say, we will ignore taxes and other market
imperfections for the time being.
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2.4 The Death Rate

Let λt ≥ 0 be the (hazard) death rate for the insured population holding the
variable annuities. In our current formulation of the problem, and throughout
the paper, the hazard rate is assumed to be deterministic. Therefore, we let:

βt = e
− R t0 λsds (7)

denote the probability of any individual within the group surviving to time
t, conditional on being alive at time zero. This implies that β0 = 1 and
limt→∞ βt = 0.
More importantly, and quite critical to our model, we assume a very large

pool of insured fund owners — each of whom invests a relatively small amount
in the protected mutual fund — so that a fraction βtλtdt of the population
dies between time t and t + dt. This is another way of stating the classical
(and simplifying) assumption that mortality risk is completely diversifiable,
and therefore not priced by the market. As a result, the outflow (or payout)
due only to death between time t and t+ dt is precisely:

ctdt := v0G(Ut)βtλtdt, (8)

where v0 is the (very large) originally invested capital of all the fund owners.
We are tracking the dynamic evolution of the entire sum of money which
was originally invested in the death-protected mutual fund at time t = 0.
Therefore, to be absolutely precise, we will in fact be computing the opti-
mal lapsation policy for the entire population, as opposed to any particular
individual within that group. Rational behaviour will be for all individuals
still alive at that time — who have the same investment guarantee — to lapse
simultaneously.
It should be emphasized that we are not going to hedge any individual

variable annuity account. Rather, we will hedge the seller’s exposure to all
such accounts in aggregate.

2.5 The Hedge Portfolio

The insurance company insuring the protected mutual fund hedges the guar-
antee by trading the underlying asset St (not Ut) and the money market
account Rt, during the life of the product. Up to the optimal lapsation time,
the hedge portfolio will be denoted by:

Vt = ϕtSt + ψtRt (9)
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where ϕt is the amount held in the underlying security, and ψt is the amount
invested in the money market account. This formulation is intuitively con-
sistent with the firm’s commitments, since, if there were no guarantees,
Vt := v0Ut, and ϕt := v0At, as per equation (3). The presence of the guaran-
tee ‘forces’ a ψt term, and a more complex trading strategy ϕt.
The hedging portfolio will obey the following stochastic differential equa-

tion:
dVt = ϕtdSt + ψtdRt − ctdt, (10)

The term ϕtdSt + ψtdRt in equation (10) is a self-financing portion, while
the quantity, ctdt represents the (consumption) outflow due to death. At this
point we have not determined (optimized) αt and kt, and therefore V0 does not
necessarily equal v0, the original amount invested. In other words, recall that
our objective is to find the {αt, kt} ‘pair’ that makes the hedge self-financing.
In our context, self-financing implies that the initial (aggregate) cost of the
hedge, V0, is exactly equal to the initial (aggregate) amount invested by the
unit holders, denoted by v0.
By the definition of a hedging strategy, for the portfolio Vt to cover the

guarantee, we must have that:

Vt ≥ Lt =
½
v0(1− kt)βtUt for 0 ≤ t ≤ T
v0βTG(UT ) for t = T

, a.s. (11)

The value of the portfolio (assets) must always exceed the liability. The
portion v0(1−kt)βtUt covers the ‘lapsation value’ of the fund, for the fraction
(βt) who are still alive, while v0βTG(UT ) covers the maturity guarantee.

2.6 Formulation as American Contingent Claim

Using martingale pricing methodology, extensively described in Karatzas and
Shreve (1998), we now locate V0, which is the initial cost of the hedge. First,
notice that although Vt, from equation (10), is not a self-financing portfolio
(SFP), as a result of ctdt, it can obviously be converted to an SFP by adding
an appropriate term. The portfolio Vt + ηtRt, is an SFP if we construct
dηt = (ct/Rt)dt, and η0 = 0. This, in turn, implies that:

Mt :=
1

Rt
(Vt + ηtRt) =

Vt
Rt
+ ηt, (12)
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is a Martingale. Therefore, since R0 = 1, and η0 = 0, we have that:

V0 =M0 = eE0 [Ms] = eE0 · Vs
Rs
+

Z s

0

ct
Rt
dt

¸
= eE0 · Vs

Rs
+

Z s

0

v0βtλtG(Ut)

Rt
dt

¸
,

(13)

for any s > 0, where eEt[.] denotes the risk-neutral conditional (on time−t)
expectation. In words, the discounted value of the hedging portfolio plus
the discounted sum of all payments made at death, is a Martingale. If, for
example, the death rate and the continuous insurance charge are set to zero
(αt = 0, λt = 0), while the deferred surrender charge is set at 100%, (i.e.

kt = 1), equation (13), with s = T , collapses to: V0 = eE0 [max[1, ST ] /RT ].
This is the Black-Scholes/Merton, risk-neutral expectation for an at-the-
money European put option plus a position in the underlying security.
Finally, our paper’s main theoretical result is as follows: The initial value

(cost) of the hedging portfolio for the variable annuities must satisfy:

V0 = v0 sup
0≤s≤T

eE0 ·Ls
Rs
+

Z s

0

βtλtG(Ut)

Rt
dt

¸
, (14)

where the supremum in equation (14) is taken over all possible stopping
times, in the early exercise sense of McKean (1965). Most importantly, the
value of s∗(U·) which maximizes the risk-neutral expectation in equation (14),
is the optimal lapsation time for the death-protected mutual fund.
At first glance, the expectation in equation (14), and the free boundary

problem is creates, is more ‘complicated’ than a standard American option
pricing situation. This is primarily due to the path-dependent nature of
the integral term. And, in the most general case, all we can hope for are
numerical approximation, a la techniques described in detail by Kim (1990)
or Ju (1998), for example. Fortunately, as we shall see in the next section,
when we impose a particular structure on the hazard rate λt (and maturity
guarantee) and in addition we assume a fixed{α, k} ‘pair’, the problem can
actually be solved in closed-form. This is quite similar to the valuation of
the perpetual American put — which is available in closed form — because the
relevant PDE collapses to an easily-solvable ODE.
To complete the argument, the expectation in equation (14) will provide

us with V0. We then set V0 = v0, to locate the {αt, kt} surface. To understand
why this is the case, imagine the following. If we assume that kt is small
enough and the αt = 0, then it must be that for any fixed v0, V0/v0 > 1, since
the initial capital is not enough to fund the benefit. Also, if αt = α → ∞,
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then V0/v0 < 1, since, Ut → 0 and in this case the guarantee collapses to:

V0
v0
= max

·
1− k0,

Z T

0

βtλte
gt

Rt
dt+

βTe
gT

Rt

¸
. (15)

Now,
R T
0
βtλtdt = 1−βT , so the second term in equation (15) is less than one,

as long as rt > g ∀t. This should be intuitive since otherwise the guarantee
exceeds the risk free rate which can not be sustainable.10 Likewise, the
first term in equation (15) is less than one, provided that k > 0. And so,
V0/v0 < 1, when α→∞, provided that both conditions apply. Therefore, in
either event, there must exist some intermediate value of bα, that results in
V0/v0 = 1, and that exactly funds the maturity/death guarantee.

2.7 Alternative Risk-Neutral Representation.

Define the (future lifetime) random variable, τ , with density λtβt, such that:

P (τ > t) =

Z ∞

t

λsβsds = βt. (16)

We can now express equation (13) as:

V0 = v0 sup
0≤s

E∗0

·
G(Umin[τ,s])

Rmin[τ,s]

¸
, (17)

which provides a risk-neutral pricing relationship. The sup in equation (17),
is over all stopping times (unlike τ) with respect to the filtration of Ut. We
should point out at this juncture, that equation (17), and equation (14), are
general enough to include situations where the guarantee expires at a certain
age. This is the exact opposite of a maturity guarantee, and is common in
some of the variable annuity policies. This essentially implies that if death
occurs after a certain age, (age 80 for example) the payoff from the fund is
limited to Uτ at the time of death, and not G(Uτ).

2.8 The Discounted Value of the Continuous Insurance
Charges

In some cases, it might be important to compute the discounted value of the
continuous insurance charge. First, let Iot , denote the stochastic — discounted
10The few companies who do offer accumulation rates greater than the risk free rate are

obviously undertaking a large amount of credit risk.
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to time zero — value of fees collected until time t, on a simple account of initial
investment $1. By construction, we have that:

dIot =
αtUt
Rt

dt. (18)

The quantity αtUtdt can be viewed as the instantaneous cash flow to the
insurance company, while the R−1t factor, discounts the quantity to time zero.
We are interested in both the dynamics of Iot and its risk neutral expectationeE0[I0ξ ], where ξ is a general stopping time for the process Ut. First, by a
simple chain rule, we have that:

d(
Ut
Rt
) =
−rtUt
Rt

dt+
1

Rt
dUt

=
−rtUt
Rt

dt+
(rt − αt)Ut

Rt
dt+

σ(Ut, t)Ut
Rt

d eBt
=
−αtUt
Rt

dt+
σ(Ut, t)Ut

Rt
d eBt

= −dI0t +
σ(Ut, t)Ut

Rt
d eBt. (19)

Therefore, by rearranging equation (19), and recalling that R−10 U0 = 1, we
have that:

Ioξ =

Z ξ

0

dIot = −
Z ξ

0

d(
Ut
Rt
) +

Z ξ

0

σ(Ut, t)Ut
Rt

d eBt
= 1− Uξ

Rξ
+

Z ξ

0

σ(Ut, t)Ut
Rt

d eBt. (20)

The discounted value of the insurance risk charge, up to a stopping time
(subject to standard integrability conditions) ξ, is: 1 − R−1ξ Uξ plus an Ito
(martingale) integral term, whose expectation is clearly zero. This implies:

eE0[Ioξ ] = 1− eE0 ·Uξ

Rξ

¸
= 1− eE0 hSξe− R ξ0 (rt+αt)dti (21)

where the second equality comes from equation (3). In specific cases, equation
(21) can be solved to provide the entire distribution of the discounted value
of fees.
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3 Analytic Solution.

3.1 Constant DSC and Hazard Rate with Guarantee
at Death only.

In this section we make some assumptions on the structure of λt,αt, kt in
order to derive complete analytic solutions for the optimal lapsation time.
Specifically, we start by assuming that λt = λ, which implies that βt =
exp{−λt}. This is an exponential assumption for future lifetime, which can
be calibrated to any mortality table by fixing the same life expectancy. For
illustrative purposed, Figure 1 displays the relationship between the expo-
nential distribution and a proper mortality table, assuming they share the
same life expectancy, or first moment. Specifically, the graph shows the Cu-
mulative Density Function (CDF) of the age-at-death random variable, under
both assumptions. In terms of ‘goodness of fit’ to population mortality, the
exponential assumption kills too many people early on, and lets too many
live later. As well, the exponential assumption allows for a finite probability
of surviving to any age. This is clearly unrealistic, but, we claim it provides
a reasonable first approximation for the optimal lapsation time.
Also, since most insurance companies charge the same insurance fee, α,

regardless of the age of the account holder — which implies that the aggregate
hazard rate is independent of age — we believe that an exponential assumption
can be justified based on common practice in the industry.
In this section, we further assume that T = ∞, which means that the

guarantee only applies at death. Likewise, we let g = 0, so that G(Ut) =
max[1, Ut] and the deferred surrender charge is kt = k and the insurance
charge is αt = α. The constant assumption for both these variable is less
problematic, since, in practice this is usually the case. Finally, we assume a
simplified geometric Brownian motion economy with σ(Ut, t) = σUt, rt = r,
and Rt = exp{rt}.
The main pricing equation, originally presented in equation (13), can be

written as:

Vt = V (t, u) = v0 sup
t≤s

eEt ·(1− k)e−λse−r(s−t)Us + Z s

t

λe−λqe−r(q−t)max[1, Uq]dq
¸
,

(22)
where the first term in the expectation captures the surrender/lapsation
value, and the second (integral) term captures the actual death benefit. Now,
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Figure 1: The graph displays the relationship between the probability of sur-
vival under an exponential distribution assumption (solid line) and a realistic
Society of Actuaries population mortality table (dashed line), assuming the
same life expectancy of 20 years, at age 60.
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given the infinite maturity, we can re-write equation (22) as:

V (t, u) = e−λtv0W (u), (23)

where

W (u) = sup
0≤s

eE0 ·(1− k)e−(λ+r)sUs + Z s

0

λe−(λ+r)qmax[1, Uq]dq
¸

(24)

Using standard techniques obtained from the generator of the diffusion pro-
cess — see Karatzas and Shreve (1998) for details — this leads to the follow-
ing ordinary differential equation (ODE), satisfied by the valuation function
W (u);

(r − α)uW 0(u) +
σ2

2
u2W 00(u)− (λ+ r)W (u) = −λmax[1, u], (25)

on the interval (0, L), and W (u) = (1− k)u, on the interval [L,∞), where L
is the optimal lapsation boundary. Also, by construction, W (1) = 1.
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The solution to this particular ODE, is:

W (u) =

½
λ

λ+α
u+ b1u

a1 + b2u
a2 1 ≤ u ≤ L

λ+rua1
λ+r

0 ≤ u ≤ 1 , (26)

where:

a1 =
−(r − α− 1

2
σ2) +

q
(r − α− 1

2
σ2)2 + 2σ2(λ+ r)

σ2
, (27)

a2 =
−(r − α− 1

2
σ2)−

q
(r − α− 1

2
σ2)2 + 2σ2(λ+ r)

σ2
(28)

and

b1 =
1

a1 − a2

µ
a1r

λ+ r
− λ+ αa2

λ+ α

¶
, (29)

b2 =
1

a1 − a2

µ
λ+ αa1
λ+ α

− a1r

λ+ r

¶
(30)

The next step is to compute the optimal lapsation time, which is the level L,
at which the fund should be lapsed, since the time dependency is irrelevant.
This is similar to the process of computing the perpetual American put price
by locating the lapsation level that maximizes the option value. In our case,
the optimal lapsation boundary is at:

L =

µ
b2(1− a2)
(a1 − 1)b1

¶ 1
a1−a2

, (31)

and the corresponding11 deferred surrender charge is:

k = 1− λ

λ+ α
− b1L(a1−1) − b2L(a2−1) (32)

The feasible region for the continuous insurance is determined by the condi-
tions b1 ≥ 0, and L ≥ 1. This leads to a range of feasible values in between:

αL =
σ2

2

·
2r

σ2
− 2(λ+ r)

aσ2
− 1 + a

¸
, (33)

11The details of this ‘proof’ are available from the authors upon request.
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where a is the unique root of the cubic equation,

a3 − a2 + a2(λ+ r)
σ2

− (λ+ r)
2

rσ2
= 0 (34)

and

αH =
σ2λ

2r
(35)

Naturally, a, the root of equation (34), must be obtained using (Newton)
numerical methods. Note that when α = αL, the DSC must be high enough
to guarantee non-lapsation so that L = ∞. Likewise, when α = αH , L = 1
and lapsation is instantaneous. The maximum contingent deferred surrender
charge — that would make the product viable — is:

k = 1− λ

λ+ αL
=

αL
λ+ αL

, (36)

since b1 = 0 and L =∞. Stated differently, if the insurance company wants
to levy the lowest possible fee on the variable annuity — denoted by αL — they
must charge k so they have enough to cover the hedging cost. A Deferred
Surrender Charge of k will complete the market.
Finally, we conclude that the Total Expected (risk neutral) Discounted

Fees consists of two portions The first portion is the present value of fees
collected until the earlier of death or lapsation. The second portion is the
present value of the DSC, if lapsation occurs prior to death. Consequently,

TEDF =
h
1− eE0 hR−1min[ξ,τ ]Umin[ξ,τ ]ii+ eE0 £R−1ξ kL, ξ < τ

¤
(37)

= 1− (1− k)L eE0 £R−1ξ , ξ < τ
¤− eE0 £R−1τ Uτ , ξ ≥ τ

¤
(38)

=
α

λ+ α

¡
1− L1−a1¢+ kL1−a1 (39)

In particular, if α = αL (which implies that L =∞), we have that TEDF =
α/(λ+ α).

4 Numerical Examples.

In the following example we will assume an r = 0.06 interest rate environ-
ment, and a population of individuals, each with a life expectancy of exactly
1/λ = 20 years. According to equations (35,33), a variable annuity with a
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Figure 2: The graph displays the relationship between the continuous insur-
ance charge (α), in basis points, and the optimal lapsation level (L). We
assume an r = 0.06 interest rate, and a 1/λ = 20 year life expectancy. The
volatility is σ1 = 0.15 (dashed line) and σ2 = 0.25 (solid line).
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volatility of σ = 15%, can ‘afford’ a continuous insurance expense charge of
any number between (10000αL =) 7.26 and (10000αH =) 93.7 basis points.
If, in fact, the lowest insurance charge, of 7.26 basis points is levied on the
fund, then the company must charge a DSC of exactly k = 0.0143 (≈1.4%),
according to equation (36). The optimal lapsation level, L, will depend on
the particular ‘pair’ (α, k) chosen by the company. For example if α = 10
basis point, then L = 1.564, and the individual should lapse as soon as the
fund appreciates by 56.4%.
Figure (2) displays the graphical relationship between the continuous in-

surance charge (in basis points) and the optimal lapsation level. Specifically,
we assume a 6% interest rate and a 20 year life expectancy. The two curves
represent a volatility of 15% and 25% respectively. Intuitively, a higher curve
indicates a higher volatility because the value of the embedded option is
higher and therefore one should wait longer — i.e. higher price appreciation
— before discarding the old option. Also, ceteris paribus, as the insurance
asset charge increases, the optimal lapsation level decreases. This is because
the costs of holding the fund are higher relative to the value of the guarantee
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Figure 3: The graph displays the relationship between the continuous in-
surance charge (α), in basis points, and the Deferred Sales Charge (k). We
assume an interest rate of r = 6%, and a life expectancy of 1/λ = 20 years.
The volatility is σ1 = 15% (solid) and σ2 = 25% (dashed).

0

0.01

0.02

0.03

0.04

0.05

DSC

20 40 60 80 100 120 140 160 180 200 220 240 260Insurance Charge (Basis Points)

as well as the exit costs. In fact, although it is hard to see from the figure,
if the insurance charge is exactly equal to αH , the optimal lapsation level
‘hits’ a value of one. This means that one should lapse the contract instan-
taneously after purchasing it, or in other words, the contract should never
be purchased. Stated differently, if α ≥ αH , the contract is not viable since
no rational individual will ever hold it.
In the same vein, Figure (3) displays the relationship between the continu-

ous insurance charge (in basis points), and the contingent deferred surrender
charge. Once again, we assume a 6% interest rate and a 20 year life ex-
pectancy. The two curves represent a volatility of 15% and 25% respectively.
Perhaps at the risk of belaboring our main point, we emphasize that all

combinations of (α, k) on the curve represent an appropriate charge for the
embedded option. In other words, there is no unique price for the contingent
claim. As the figure indicates — in the case of 25% volatility — the insurance
company can pick a DSC of 5.3% and levy a continuous insurance charge
of 28 basis points, or they can charge no DSC and impose a α of 260 basis

21



points. Either of these pairs — or any combination on the curve in between
— will create enough money to construct a self financing portfolio to hedge
the option. Of course, the optimal lapsation policy on the part of the indi-
vidual will depend on which one of these pairs is chosen by the company, as
evidenced by Figure (2). Nevertheless, there is no right or wrong continuous
insurance charge, rather, an entire range of values can be justified, provided
the contingent deferred surrender charge is properly selected.
Finally, as a summary, Table #1 displays the relationship between volatil-

ity σ and the feasible region for the continuous insurance charges. For exam-
ple, a mutual fund with a volatility of 30%, should, at the very least, levy a
continuous insurance expense charge of 42.3 basis points. This (low) amount
would fund the death benefit, only if the company imposes a DSC of 7.8%. If
the DSC is set lower than 7.8%, when α = 42.3 basis point, the death benefit
is un-hedgeable. Obviously, as intuition would dictate, if the company wants
to charge a higher α than 42.3 basis points, they can charge a lower DSC.
A few points are in order. First, when the life expectancy is greater than

20 years, i.e. the hazard rate λ < 1/20, the feasible region (αL,αH) uniformly
moves lower. In other words, the company can charge less for both (α, k).
Intuitively, higher life expectancy is akin to lower volatility, which, as one
can see in Table 1, has a dramatic effect on the values of αL,αH , and k.
For example, when 1/λ = 30, which is roughly a 50 year old, we have that
αL = 22.1 basis points, k = 6.2% and αH = 250 basis points. In the same
manner, a higher interest (discount) rate will also move the feasible region
lower.
As a means of comparison, we contrast our numerical results to data sup-

plied by Morningstar Inc., for the universe of 375 variable annuity policies
(6,600 sub-accounts) sold in the United States. The median insurance charge
levied on a simple money back guarantee variable annuity (fund) is 115 basis
points. The median volatility for these funds is 18%, and the median surren-
der charge is 7%. According to equation (32), for a volatility of σ = 0.18, and
α = 115 basis points, with r = 0.06, and 1/λ = 20, we get k = 3. 1× 10−4.
If we take a more aggressive ten-year life expectancy (1/λ = 10), we get k =
9. 2× 10−3. Both are nowhere near the median 7% reported by Morningstar.
However, if we let 1/λ = 4.4 years, we obtain ‘fair’ pricing.
Stated differently, according to our model, the average insurance charge

on a variable annuity sold in the United States can be justified, if one as-
sumes that all contract owners are completely rational and when the typical
contract owner is expected to die in exactly 4.4 years. Furthermore, since
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Assumptions: r = 0.06,λ = 1/20

Volatility (σ) 10000αL 100k 10000αH
10% 2.0 0.4 41.6

15% 7.2 1.4 93.7

20% 16.2 3.1 166.6

25% 28.2 5.3 260.4

30% 42.3 7.8 375.0

40% 74.2 12.9 666.6

Table 1: The Effect of Volatility on the Feasible Region

non-rational lapsation benefits the insurer, the reality of non-rational be-
haviour implies that even a lower average life expectancy makes observed
prices “fair”. These results are consistent with the low numbers obtained in
other estimates of the ‘value’ of the death benefit in variable annuities — see
for example Milevsky and Posner (2000) and Windcliff, Forsyth and Vetzel
(2000) — but fully accounts for lapsation in an economically parsimonious
manner.

5 Conclusion.

In a recent issue (July 2000, page 48) of the Dow Jones Investment Advisor,
a financial planner was quoted as saying:

“...with the guarantee on a variable annuity providing a protected
floor...then if the investments pan out, we can always 1035-exchange12

the client into another contract that allows us to establish a new
higher death benefit. A few months ago we had a 73-year old client
in tech stocks...when the account appreciated by 40% we did a
1035-exchange. The old contract had the old floor...we got a new
contract with a 40% higher floor....This strategy only works...with
products that contain no surrender charges...We like to structure
it so it does not cost the client anything...”

12A 1035-exchange is the practitioner terminology for the section of the United States
income tax act (ITA) which allows this transaction without inducing a taxable event.
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As the above article indicates, it appears that Real Option to lapse is
valuable and is quite popular. Although we obviously disagree with the
second part of the quote, namely that it only ‘makes sense’ when there are
no surrender charges. In any event, our paper has examined a very basic
question faced by all investors in variable annuity contracts. The issue at
hand is: At what point should I lapse my contract and re-establish the basis
of the guarantee? We view the personal ability to lapse the investment as
a Real Option that is analogous to the abandonment option, or the option
to shut down, in classical corporate finance. The symmetric opposite side
to this question is: What is the optimal asset-based charge that funds the
guarantee, assuming investors will lapse rationally? Indeed, the answer to
both questions lie in the structure of the deferred surrender charge.
Our paper’s main contribution lies in highlighting the critical importance

of the deferred surrender charge (DSC) in completing the market and allowing
the claim to be hedged. In some sense, one can say that transaction costs
(frictions) complete the market and allow for the existence of a self-financing
strategy. The self-financing strategy does not result in a unique price, per
se, but rather a menu or schedule of charges that can support the claim.
Technically, we formulated the problem of when to lapse as a free boundary
problem and provided a closed-form analytic solution when hazard rates were
constant.
Our model should enable users to answer any of the following questions:

1. By how much does the account value have to appreciate, before it
is optimal to exercise the Real Option to lapse the contract, and re-
establish a new (higher) basis?

2. Assuming a particular continuous insurance charge, what is the lowest
contingent deferred surrender charge that will allow the company to
recoup its hedging costs? Likewise, assuming a fixed DSC, what is
the lowest continuous insurance charge that will allow the insurance
company to recoup its hedging costs?

3. How high can the continuous insurance charge be set, while still main-
taining a viable product? In other words, how expensive does the
product have to be, for it to be optimal to never purchase the con-
tract?

Further research will attempt to ‘solve’ the optimal lapsation policy for
more general hazard rates, underlying processes and maturity guarantees.
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Also, the authors will examine some of the issues pertaining to hedging these
guarantees, especially as it relates to using exotic products, such as Barrier
options, that take advantage of lapsation behavior. Finally, the authors will
use some of the recent work on minimizing Shortfall Risk, which is in the
spirit of an actuarial approach, as an alternative to No Arbitrage valuation.
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6 Appendix

Typos and minor changes in the body of the paper.

• Section 2.4: after “the hazard rate is assumed to be determinstic”, add
“and to be non-integrable”.

• Formula (11): “0 ≤ t ≤ T” should be “0 ≤ t < T”.
• Section 2.6: delete the phrase “kt is small enough and the”.
• Formula (15): the final denominator should be RT . And a few lines
later, the appropriate condition should be that k0 > 1.

• Section 2.6, end. Add: “The converse is true when the rates rt and
λt are constant. In that case the second term in the above expression
equals

λ

λ+ r − g
³
1− e−(λ+r−g)T

´
+ e−(λ+r−g)T ,

which exceeds one for every T , provided g > r. In other words, the
guarantee is perfectly fundable for some α exactly when k0 > 0 and
r > g.”

• Formula (17): E∗0 should be Ẽ0
• Section 3, after (35): Change “α = αH , L = 1” to “α = αH , it follows
that k = 0, L = 1,”

• Section 3, after (36). Add before the last sentence of this paragraph:
“If k ≥ k̄ then L will be infinite, and the only α which perfectly funds
the guarantee is α = αL.”

6.1 Generalizing the model

The model of the paper is one in which a closed formula solution can be ob-
tained for the DSC k that perfectly hedges the contract for a given insurance
charge α. Much of the same analysis applies to more general models, and for
this reason, we will carry out the calculations for the more general model,
as far as possible. At the end, the general model will produce k as the root
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of an equation. In the context of the paper however, an explicit formula is
possible, and we will point out this simplification.
We incorporate three effects into this model. The first already occurred in

the early sections of the paper, namely a growth rate g ≥ 0 for the guarantee
(in section 3 and 4 of the paper we took g = 0 however).
The second effect is the inclusion of irrational lapsation at a fixed rate λ2,

typically around 10%. We now write λ1 for the death rate, and set λ = λ1+λ2.
Of course, the original model hedged against all possible lapses, rational or
irrational. Irrational lapsation leads to surplus revenue for the policy writer
though, and including this effect into the model permits hedging fees to be
lowered and made more competitive. We model such lapsation as occurring
at a fixed rate, irrespective of the behaviour of the underlying mutual fund.
The irrationality is only from the point of view of the writer of the contracts
— many of the policyholders doubtless have good reasons for lapsing that
simply have nothing to do with the economic value of the policies (eg. cash
flow). Since poor judgement is not assumed to be the cause of lapsation,
we do not assume any corresponding irrationality when it comes to failing
to lapse. In other words, the worst-case scenario that we hedge against is
still one in which there is a stopping time S such that the entire cohort of
indiviuals who haven’t previously died or lapsed (irrationally) will opt to
lapse simultaneously at time S. More complicated models, which we have
not considered, might try to stratify the initial population of policyholders
into groups with different lapsation behaviours (eg. never lapse, only lapse
irrationally, only lapse rationally, etc.)
The final effect we incorporate reflects the reality that most of the con-

tinuous insurance charges actually imposed do not get used for hedging pur-
poses. Instead they get allocated to trailer fees, management expenses, etc.
To model this, we break the total continuous insurance charge α into two
components, α = α1 + α2, where α1 is the insurance charge reserved for
hedging purposes, and the charge allocated to other purposes is α2 (specified
exogenously).
In other words, our model is as follows. The asset underlying the policy

still obeys
dSt = rSt dt+ σSt dB̃t,

and the account value Ut = e
−αtSt obeys

dUt = (r − α)Ut dt+ σUt dB̃t.
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At the time ξ of lapsation we still recover kUt for the hedge. Of course, one
could also incorporate additional non-hedging DSCs. Unlike non-hedging
insurance charges, these have no effect on how the contracts are hedged,
since their only effect is that the client recovers less than (1 − k)Ut upon
lapsing. For this reason we ignore such a possibility.
The fraction of contracts still being held at time t < ξ is now

βt = e
−λt = e−(λ1+λ2)t,

and the book value of such contracts is βtv0. The outflow from the hedge is

ct dt = v0βt[λ1(Ut ∨ egt) + [λ2(1− k) + α2]Ut] dt

since funds leave the account steadily in three ways — death, irrational lap-
sation, and non-hedging insurance charges. For convenience, write

γ = λ2(1− k) + α2. (40)

To be hedged, the value of the hedging portfolio must satisfy the condition

Vt ≥ Lt =
(
v0(1− k)βtUt , t < T

v0βt(Ut ∨ egt) , t = T

for every t. As in Karatzas and Shreve (1998), the portfolio that hedges the
aggregate accounts then satisfies

Vt = sup
T≥S≥t

Ẽ
£
e−r(S−t)LS

+

Z S

t

v0e
−r(q−t)e−λq(λ1(Uq ∨ egq) + γUq) dq | Ft

¸
,

where the supremum is taken over stopping times T ≥ S ≥ t. As before, we
wish to choose the free parameters g, α1, and k to ensure that V0 = v0.
With a finite maturity T , it is hopeless to look for analytic solutions,

and one has no recourse but to turn to numerical techniques, for example,
solving a free boundary value problem numerically as in the corresponding
problem for American options. Instead we work here with T = ∞, so that
the only way to end a contract is to lapse or to die. Work in progress involves
generalizations of the problem, including the case of a finite maturity. This
is discussed briefly in section ??.
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To eliminate the t variable, we work with a discounted account value
Yt = e

−gtUt. Then

Vt = v0e
(g−λ)t sup

S≥t
Ẽ[(1− k)e−(λ+r−g)(S−t)YS

+

Z S

t

e−(λ+r−g)(q−t)(λ1(Yq ∨ 1) + γYq) dq],

and the last expression is independent of t by the Markov property. In other
words,

Vt = v0e
(g−λ)tW (e−gtUt)

where

W (y) = sup
S≥0

Ẽ[(1− k)e−(λ+r−g)SYS

+

Z S

0

e−(λ+r−g)q(λ1(Yq ∨ 1) + γYq) dq],

dYt = (r − α− g)Yt dt+ σYt dB̃t,

Y0 = y.

The question before us is that of finding parameters so that W (1) = 1. The
approach we will take is the standard optimal stopping argument, in which
it is assumed that the optimal S is the first time Yt exceeds some level L, and
a corresponding free boundary problem is solved. This gives a candidate for
the function W . One then verifies that it is the solution using an argument
via the Snell envelope. Existence and uniqueness is addressed separately,
using monotonicity and the intermediate value theorem.
Having described the general model, we now proceed to work through

the paper, providing technical details and justifications in places where they
were originally omitted. Throughout, we will be careful to indicate places
where our comments are meant to apply to the general model, rather than
to the special cases considered in the paper (α2 = 0, λ2 = 0, and in places,
g = 0).

6.2 Commentary on section 2.4 of the paper

In the penultimate paragraph to section 2.4, it is stated that the worst-
case scenario, the one that has to be hedged against, is that all remaining
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individuals opt to lapse simultaneously at the worst possible time for the
writer of the policies. This is clear from econimic considerations, and we
have built the simultaneous lapsation principle into our model. A more
general model could be constructed in which this is a consequence rather
than a hypothesis, but we have not included this here. There are situations
in which such an analysis would be useful however. For example, if the
policy allows the writer to dynamically adjust the parameters within some
given range, the writer might react to partial lapsation at some non-optimal
time by using the surplus earnings to lower α and so delay future lapses. In
such cases, the hedging strategy would have be adapted to react to partial
lapsation. We hope to persue these issues in future work.

6.3 Commentary on section 2.6 of the paper

Consider the general model first. We need to address the following issue from
the end of the section. Fix values of the exogenous variables λ1 ≥ 0, λ2 ≥ 0,
α2 ≥ 0, r > 0, and σ > 0. When do there exist values of the three free
variables α1 ≥ 0, k ∈ (0, 1], and g ≥ 0 that make V0/v0 = 1, and to what
extent are these values unique? In particular, given values for two of the free
variables, does the above condition uniquely determine a value of the third
variable? Note that we rule out the case k = 0, as in that case we expect the
locking in of any gains to produce instantaneous lapsation.
Recalling that Ut = e

−αtSt, we have that

V0
v0
= sup

0≤s≤T
Ẽ[(1− k)e−(r+α+λ)sSs1{s<T} + e−(r+λ)s(e−αsSs ∨ egs)1{s=T}

+

Z s

0

e−(λ+r)q(λ1(e−αqSq ∨ egq) + γe−αqSq) dq]. (41)

Since γ = λ2(1− k) + α2, (41) is easily seen to be continuous and monotone
in the free variables α1 ≥ 0, k ∈ (0, 1], and g ≥ 0. It is decreasing in α1 and
k, and is increasing in g.
If λ2 > 0 then (41) is strictly monotone in all three variables, at least while

the optimal s satisfies P̃ (s = 0) < 1. To see this observe that the integrand
itself is strictly monotone (notice that e−αqSq − egq takes both positive and
negative values for q arbitrarily close to 0). When P (s = 0) = 1 it follows
that lapsation is instantaneous, and V0/v0 = 1− k < 1. Thus, for any value
of two of the three free variables, there is at most one value of the remaining
variable that makes V0/v0 = 1.
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If λ2 = 0 then (41) is still strictly monotone in α1 and g, but does not
vary with k once the optimal s satisfies P (s = T ) = 1. In this case, there
will typically be a value k̄ depending on α1 and g such that V0/v0 is strictly
monotone in k for k < k̄, and is constant for k ≥ k̄.
We will analyze this expression further, in the special case that T = ∞.

To ensure convergence, we must have g < λ + r. Taking limits as α1 → ∞
gives

V0
v0
=

Z ∞

0

λ1e
−(λ+r)qegq dq =

λ1
λ+ r − g .

If g > λ2+ r then this expression exceeds 1, so by monotonicity there will be
no parameter values for which V0/v0 = 1, and the portfolio is unhedgeable.
In other words, though values of g between λ2+ r and λ+ r could be hedged
by charging an initial fee, they cannot be hedged just on the basis of DSC’s
or continuous insurance charges. And values of g exceeding λ+ r are simply
unsupportable under any circumstances.
So in what follows, fix a value of g such that g < λ2+ r. Then V0/v0 < 1

for α1 sufficiently large, uniformly in k. At the other extreme, consider what
happens when α1 = k = 0. In that case, since e

−rqSq is a martingale,

V0
v0
= sup

s
Ẽ[

Z ∞

s

(λ+ α2)e
−(λ+α2)qe−rqSq dq

+

Z s

0

e−(λ+r)q(λ1(e−α2qSq ∨ egq) + (λ2 + α2)e
−α2qSq) dq]

> sup
s
Ẽ[

Z ∞

s

(λ+ α2)e
−(λ+α2)qe−rqSq dq

+

Z s

0

(λ+ α2)e
−(λ+α2)qe−rqSq dq]

=

Z ∞

0

(λ+ α2)e
−(λ+α2)q dq = 1.

Appealing to monotonicity, we see that the values of α1 such that there exists
a k ∈ [0, 1] making V0/v0 = 1, form an interval [αL,αH ], where 0 ≤ αL <
αH < ∞. This is the feaxible interval — the range of parameters for which
there exists a perfect hedge. Moreover, when α1 = αH , the hedging value of
k must be k = 1, otherwise α1 could be increased still further.
Consider first the case λ2 > 0. The parameter values are constrained

by the inequalities αL ≥ 0 and k ≤ 1. By strict monotonicity, at least
one of these inequalities must hold with equality at the lower endpoint the
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feasible interval. In fact, substituting numerical values easily shows that
either possibility can occur. For example, if λ2 is large it may be possible
to hedge the contract even without using continuous insurance charges for
hedging, in effect using the DSC of lapsing customers to hedge the guarantee
of the remaining customers. On the other hand, if λ2 is small but non-zero
it will turn out that this is impossible, and that k = 1 when α1 = αL.
If λ2 = 0, on the other hand, then there is a further constraint to take

account of, because at some point V0/v0 ceases to be strictly monotone in
k. This will make it impossible to raise k to compensate for further lowering
α1. In fact, we will see later that in this case, this effect defines the value
αL, and that for α1 = αL, a range of values k ∈ [k̄, 1] will hedge the contract.
The choice of k in this range is irrelevant, because even at k = k̄, the optimal
strategy is to never lapse.
In fact, there is a related effect even in the case λ2 > 0. It will turn out

that there is an intermediate value αM of interest. Under the perfect hedge,
the optimal lapsation time is a.s. infinite when α1 ∈ [αL,αM ], and is finite
with positive probability when α1 ∈ (αM ,αH ]. If λ2 = 0 then αL = αM , but
otherwise we have αL < αM . When λ2 is small but nonzero, the two values
are very close of course, which is why k = 1 when α1 = αL in this situation.

6.4 Commentary on Section 3: Snell’s envelope

In the next section we are going to derive the function which is the conjec-
tured solution to the optimal stopping problem discussed above. It is worth
keeping in mind what properties this function must have, before we can con-
clude that it really does solve the problem. Recall that the solution to an
optimal stopping problem

sup
s≥0

E[As]

(where s ranges over stopping times) is given by the Snell envelope. In other
words, in its simplest form, by a process Mt such that

• Mt is a uniformly integrable continuous supermartingale

• Mt ≥ At ≥ 0 for every t
• M∗

t =Mt∧ξ is a martingale, where ξ = inf{t > 0 |Mt = At}.
• limt→∞Mt = limt→∞At a.s. on {ξ =∞}
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Then for any stopping time s we have that

M0 ≥ E[Ms] ≥ E[As],

and
M0 =M

∗
0 = E[M

∗
ξ ] = E[Aξ].

We take

Mt = e
−(λ+r−g)tW (Yt)+

Z t

0

e−(λ+r−g)q(λ1(Yq ∨ 1) + γYq) dq

At = (1− k)e−(λ+r−g)tYt+
Z t

0

e−(λ+r−g)q(λ1(Yq ∨ 1) + γYq) dq

Assume that
g < λ+ r. (42)

In fact, to actually find a suitable function W satisfying W (1) = 1, we’ll end
up needing the stronger condition g < λ2 + r. But the latter is not required
for this part of the argument.
What will be required of W (y) is as follows. There is a value L ∈ (1,∞]

such that:

• W (y) ≥ (1− k)y for every y > 0.
• W (1) = 1.
• W (y) is bounded near y = 0.
• W (y) is C2 on (0, L).
• LW (y) − (λ + r − g)W (y) = −(λ1(y ∨ 1) + γy) on (0, L), where L is
the generator of Yt.

If L =∞ then there is a k0 ≤ k such that

• W (y)/y → (1− k0) as y →∞.

If L <∞ then there is a k0 ≤ k such that

• W (y) > (1− k0)y for y < L and W (y) = (1− k0)y for y > L.
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• W (y) is convex and C1 in some neighbourhood of y = L.

Note that when L <∞, the only situation in which it will turn out that
k0 6= k is that λ2 = 0 and α1 = αL. But when L = ∞ it will turn out that
k0 < k for α1 ∈ [αL,αM).
Given the above conditions, the necessary verification goes as follows.

First of all, e−(λ+r−g)tYt is a geometric Brownian motion with negative drift,
hence is uniformly integrable and converges to 0 as t→∞. By local bound-
edness and linear growth of W , as well as the fact that g < λ+ r, the same
is true for e−(λ+r−g)tW (Yt). Using the exponential decay of the integrand, in
fact Mt is uniformly integrable as well. Moreover, limt→∞Mt = limt→∞At.
Since W is C2 away from L we can apply Ito’s lemma up to ξ, the first
time Y hits L. Because of the ODE satisfied by W , it follows that M∗ is a
local martingale. By uniform integrability, in fact it is a martingale. The
supermartingale property follows similarly, the only potential problem being
near times t when Yt = L <∞. Those get handled using the smooth pasting
condition, namely that W is C1 and convex near L.

6.5 Finite Horizon

Before proceeding to solve the optimal stopping, it is worth recording the
form the problem takes if some of our simplifying assumptions (constant k,
infinite time horizon, exponential mortality) are relaxed. For example, in
this section we’ll exogenously specify a DSC schedule kt. Our goal will be to
determine the insurance charge α1 that allows the product to be hedged.
We will use the notation Ẽt,u to denote expectations for the process

(Us)s≥t under the risk-neutral probability measure making Ut = u a.s. Write
λ1t for the hazard rate at time t for the population who bought into the con-
tract at time 0. We still assume that this population is large enough that the
hazard rate can be taken to be deterministic, but we no longer assume that
the rate is constant. A commonly specification is that of Gompertz mortal-
ity, which can often be adjusted to provide a good fit to empirical mortality
rates.
Likewise we assume that the rate of irrational lapsation λ2t (of investors

still invested at time t) is determinstic, and not dependent, say, on the per-
formance of the market. Deciding how to specify λ2t is in fact one of the most
proprietary aspects of corporate modelling of variable annuities. As before,
the net hazard rate is λt = λ1t + λ2t .
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As before, the value of the hedging portfolio at time t, as a function of
the value u of the underlying account, is

sup
T≥S≥t

Ẽt,u

·
e−r(S−t)L(S, US) +

Z S

t

v0e
−r(q−t)βqG(q, Uq) dq

¸
, (43)

where γt = λ2t (1− kt) + α2, βt = e
− R t0 λq dq,

L(t, u) =

(
v0(1− kt)βtu , t < T

v0βt(u ∨ egt) , t = T,

G(t, u) = λ1q(Uq ∨ egq) + γqUq.

To calculate this supremum we set

Mt = e
−rtV (t, Ut) +

Z t

0

v0e
−rqβqG(q, Uq) dq,

At = e
−rtL(t, Ut) +

Z t

0

v0e
−rqβqG(q, Uq) dq,

where V (t, u) is chosen to make the conditions on Mt from the previous
section hold. This being so, the same argument as given earlier shows that

Mt = sup
T≥S≥t

Ẽ[AS |t],

in which case simple algebra shows that

V (t, Ut) = sup
T≥S≥t

Ẽ

·
e−r(S−t)L(S,US) +

Z S

t

v0e
−r(q−t)βqG(q, Uq) dq | Ft

¸
,

so (43) equals V (t, u).
As before, V (t, u) must satisfy a variety of conditions in order to carry

through the argument, of which we record simply the three most important.
The first comes from the requirement that the contract be hedgeable on the
basis of the initial account deposits. In other words, that

V (0, 1) = v0. (44)

The second expresses the fact that the contract is hedged against lapsation,
namely that

V (t, u) ≥ L(t, u) (45)

39



for every t, u. Finally, the requirement that Mt be a supermartingale (and
a martingale when stopped at the time of optimal lapsation) implies that
V (t, u) satisfies a PDE for values of (t, u) making the inequality (45) is strict.
To read off this PDE, note that

dMt = e
−rt
h
− rV (t, Ut) + ∂V

∂t
(t, Ut) + LV (t, Ut)

+ v0βtG(t, Ut)
i
dt+ dt

where t is a local martingale, and

• Ṽ (0, 1) = 1.

• Ṽ (t, u) ≥ L̃(t, u) =
(
(1− kt)u, t < T

u ∨ egt, t = T.

• ∂Ṽ
∂t
+ (r − α)u∂Ṽ

∂u
+ σ2

2
u2 ∂

2Ṽ
∂u2
− (r − λt)Ṽ = −G.

Note, as a check of consistency, that these conditions are indeed satisfied
in the case

Ṽ (t, u) = egtW (e−gtu)

of the preceding sections.
Work currently in progress will examine the numerical solution of such

problems. Note that the condition Ṽ (0, 1) = 1 means that an iterative
scheme is called for. In particular, the algorithm takes a preliminary value of
α1, solves the PDE using a coarse grid, updates the value of α1 depending on
whether the derived value of Ṽ (0, 1) overshoots or undershoots, then re-solves
the PDE with a finer grid, etc. The adjustment made to α1 is made using an
empirical Newton scheme, based on the change observed over the previous
iteration. An alternative numerical procedure familiar from the American
option literature, which is also suitable for use as part of an iterative solution
scheme, would first translate the PDE into an integral equation.

6.6 Commentary on Section 3: the free BVP

We carry out the argument, as far as possible, with the generalized model
described above. Recall that we are searching for a W (y) satisfying the list
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of conditions given in section ??. In particular, W solves the inhomogeneous
ODE

(r − α− g)yW 0(y) +
σ2

2
y2W 00(y)− (λ+ r − g)W (y)

= − [λ1(1 ∨ y) + γy] . (46)

The general solution to the corresponding homogeneous ODE is

A1y
a1 +A2y

a2,

where a1 > a2 satisfy

σ2

2
a(a− 1) + (r − α− g)a− (λ+ r − g) = 0. (47)

The value of this expression when a = 0 and a = 1 are −(λ + r − g) and
−(λ+α) respectively. By (42), both values are strictly negative. As a result,
we have that a1 > 1 and a2 < 0. Since W (y) is bounded near y = 0, it
follows that A2 = 0. Of course, we have explicitly that

a1 =
−(r − α− g − 1

2
σ2) +

q
(r − α− g − 1

2
σ2)2 + 2σ2(λ+ r − g)

σ2
(48)

a2 =
−(r − α− g − 1

2
σ2)−

q
(r − α− g − 1

2
σ2)2 + 2σ2(λ+ r − g)

σ2
. (49)

Note that neither a1 nor a2 depend on k. As well, from the tilting of (47) we
have that a1 and a2 are increasing in α, with a1 →∞ and a2 → 0 as α→∞.
By direct substitution, a particular solution of (46) on (0, 1) is

λ1
λ+ r − g +

γ

λ+ α
y.

Since W (1) = 1, it follows that

W (y) =
λ1

λ+ r − g (1− y
a1) +

γ

λ+ α
(y − ya1) + ya1. (50)

Similarly, a particular solution of (46) on (1,∞) is
γ + λ1
λ+ α

y.
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Thus on (1, L) our function has the form

W (y) =
γ + λ1
λ+ α

y + b1y
a1 + b2y

a2 . (51)

We require thatW be C2 on (0, L), which will be the case provided the values
of W (1) and W 0(1) agree from the left and right. In other words, we need
the following conditions:

γ + λ1
λ+ α

+ b1a1 + b2a2 = −a1 λ1
λ+ r − g + (1− a1)

γ

λ+ α
+ a1 (52)

γ + λ1
λ+ α

+ b1 + b2 = 1. (53)

Multiplying (53) by a1 and subtracting (52), we get that

(a1 − a2)b2 = a1λ1
·

1

λ+ r − g −
1

λ+ α

¸
+

λ1
λ+ α

(54)

= a1

·
(λ+ α)− λ1

λ+ α
− (λ+ r − g)− λ1

λ+ r − g
¸
+

λ1
λ+ α

.

In other words,

b2 =
1

a1 − a2

·
λ1 + (α+ λ2)a1

λ+ α
− a1(λ2 + r − g)

λ+ r − g
¸
, (55)

b1 = 1− b2 − γ + λ1
λ+ α

. (56)

Note that the expression for b2 is independent of k and generalizes formula
(30) of the paper. Further, (54) can be written in the form

(a1 − a2)b2 = λ1
λ+ α

·
a1

α+ g − r
λ+ r − g + 1

¸
. (57)

But by (47),

a1
α+ g − r
λ+ r − g + 1 =

σ2a1(a1 − 1)
2(λ+ r − g) .

Thus

b2 =
λ1σ

2a1(a1 − 1)
2(λ+ α)(a1 − a2)(λ+ r − g) > 0. (58)
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6.7 CASE 1:

L <∞.
We first treat the case that L < ∞. In that case, W (y)/y and W 0(y)

must both equal 1− k when y = L. In other words,

1− k = b2a2La2−1 + b1a1La1−1 + γ + λ1
λ+ α

(59)

= b2L
a2−1 + b1La1−1 +

γ + λ1
λ+ α

. (60)

Therefore
b1(a1 − 1)La1−1 = b2(1− a2)La2−1, (61)

and so

L =

·
b2(1− a2)
b1(a1 − 1)

¸ 1
a1−a2

(62)

which gives formula (31) of the paper. Note as well that b1 ≥ 0. Moreover, if
λ2 = 0 then not only b2, but b1 as well, will be independent of k. Thus (62)
determines L and so (60) determines k as in (32) of the paper.
If λ2 6= 0, we must solve for L numerically instead. Subtracting (59) from

a1 times (60) gives the equation

(1− k)(a1 − 1) = b2(a1 − a2)La2−1 + (a1 − 1)γ + λ1
λ+ α

.

Substituting (40) and solving, it follows that

1− k = b2(a1 − a2)La2−1(λ+ α) + (a1 − 1)(α2 + λ1)

(a1 − 1)(λ1 + α)
. (63)

Using (56) and (40), equation (60) becomes that

(1− k)
·
1− λ2

λ+ α
(1− La1−1)

¸
= b2L

a2−1 + (1− b2)La1−1 + λ1 + α2
λ+ α

(1− La1−1).

In other words,

(1− k)[λ1 + α+ λ2L
a1−1]

= b2(λ+ α)La2−1 + (1− b2)(λ+ α)La1−1 + (λ1 + α2)(1− La1−1).
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Substituting (63) gives that

λ1 + α2 +
b2(λ+ α)(a1 − a2)

a1 − 1 La2−1

+
λ2(λ1 + α2)

λ1 + α
La1−1 +

λ2b2(λ+ α)(a1 − a2)
(a1 − 1)(λ1 + α)

La1+a2−2

= b2(λ+ α)La2−1 + (1− b2)(λ+ α)La1−1 + (λ1 + α2)(1− La1−1).

Collecting terms,

b2(λ+ α)
1− a2
a1 − 1L

a2−1 + (λ+ α)

·
b2 − α1

λ1 + α

¸
La1−1

+
λ2b2(λ+ α)(a1 − a2)
(a1 − 1)(λ1 + α)

La1+a2−2 = 0.

That is,

b2(1− a2)
a1 − 1 +

·
b2 − α1

λ1 + α

¸
La1−a2 +

λ2b2(a1 − a2)
(a1 − 1)(λ1 + α)

La1−1 = 0. (64)

For there to be a positive root, the middle coefficient must be negative, that
is, b2 < α1/(λ1+α). In this case it is easily seen that there is exactly one root.
It can be found simply using Newton0smethod, whereuponkisfoundusing(63).
Having worked our way down to an equation for L, let us turn the ar-

gument around, and verify that we really have obtained a solution to the
desired problem, and under what conditions we have done so.
The parameters g ≥ 0, r ≥ 0, λ1 ≥ 0, λ2 ≥ 0, and α2 ≥ 0 are given, and

(42) is assumed. Fix an α1 > 0. Formulae (48), (49), and (58) then define
a1 > 1, a2 < 0, and b2 > 0. Assume that

b2 <
α1

λ1 + α
, (65)

in which case (64) has a unique positive solution L. Assume further that

L > 1. (66)

Define 1− k ≥ 0 by (63), and then b1 by (56). Equations (59) and (60) hold,
from which (61) follows, so that b1 ≥ 0. Defining the function W (y) by (50)
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and (51) gives us a solution to (46) on (0, L), which is tangent to the line
(1− k)y at y = L. Take W (y) = (1− k)y for y ≥ L.
For y ∈ (1, L),

W 00(y) = a1(a1 − 1)b1ya1−2 + a2(a2 − 1)b2ya2−2 > 0.
For y ∈ (0, 1),

W 00(y) = a1(a1 − 1)ya1−2
·
1− λ1

λ+ r − g −
γ

λ+ α

¸
, (67)

which does not change sign and is positive at y = 1 (by continuity of W 00).
Thus W is convex on [0, L]. Since (1− k)y is the tangent line at y = L, we
actually have that W (y) ≥ (1− k)y for y ∈ [0, L], and that W is convex on
[0,∞). Since W (1) = 1, also 1 − k ≤ 1. It follows that W satisfies all the
properties demanded in section ??, so that W really does give the solution
to the optimal stopping problem. Note also that by (67) we have that

1− λ1
λ+ r − g > 0,

or in other words, we recover the condition

g < λ2 + r. (68)

which is stronger than (42). Where we stand is that, assuming (68), the
conditions required to make the above argument work are precisely (65), and
(66). In sections ?? and ?? we identify the range of parameters for which
these conditions hold as an interval (αM ,αH).

6.8 CASE 2:

L =∞.
The main argument in this section will only be relevant when λ2 > 0. We

reserve discussion of the case λ2 = 0 for section ??.
Since L = ∞, we are searching for solutions to the PDE on (0,∞). In

view of the linear growth condition, we consider solutions with b1 = 0. But
by (56) this means that

1− b2 = γ + λ1
λ+ α

.
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In other words,

1− k = − 1
λ2
[(λ+ α)b2 − α1 − λ2.] (69)

Set k0 = b2 > 0. Then

W (y) = (1− k0)(y − ya2) + ya2

for y > 1, so thatW (y)/y → 1−k0 as y →∞. Assume that the k determined
by (69) satisfies

1− k ≥ 0. (70)

Then

1− k0 = (1− k)λ2 + α2 + λ1
λ+ α

≥ 0
too, and as before, it is easy to see that W is convex. Thus W (y) ≥ 1 − k0
for every y > 0. We have almost shown that W satisfies the conditions of
section ??. The only additional constraint, other than (70) is that

k0 ≤ k.

In section ?? we will identify an αM > 0 such that (65) implies that α1 > αM .
So assume that

0 ≤ α1 ≤ αM . (71)

Then b2 ≥ α1/(λ1 + α). In other words,

1− k0 = 1− b2 ≤ λ1 + α2
λ1 + α

.

Therefore

k − k0 = (1− k0)− (λ+ α)(1− k0)− α2 − λ1
λ2

=
α2 + λ1 − (λ1 + α)(1− k0)

λ2
≥ 0,

as required. The upshot is that, subject to the conditions (70) and (71),
we have found a range of solutions to the optimal stopping problem, with
L =∞.
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6.9 Commentary on Section 3: αL and αH

In this section, we will derive the statements made concerning αL and αH ,
namely that (34) of the paper has a unique solution, and that formulas (33)
and (35) of the paper hold. Because it simplifies the arguments, we assume
in this section that α2 = λ2 = 0. We will take up the general case in section
??. In the current section we must also take up the issue, left unaddressed
in subsection ??, of solutions to the problem with λ2 = 0 and L =∞.
Before starting, observe that the constraint that defines αL in the paper

is that b1 = 0, and the constraint defining αH is that L = 1. Observe also
that by (68), we are assuming that g < r.
To obtain αH , note that W

0(L) = 1 − k. When L = 1 we must have
k = 0, so W 0(1) = 1. In other words,

a1 =
λ+ r − g
r − g = 1 +

λ

r − g . (72)

Substituting this into equation (47) shows that

0 = (r − g − α)
λ+ r − g
r − g +

σ2

2
· λ+ r − g
r − g · λ

r − g − (λ+ r − g)

=
λ+ r − g
r − g

µ
σ2λ

2(r − g) − α

¶
,

from which equation (35) of the paper follows.
Turning to αL, note that both a1 and a2 are solutions to the equation

σ2

2
a(a− 1) + (r − g − α)a− (λ+ r − g) = 0.

In particular, both satisfy

r − g − α =
λ+ r − g

a
+

σ2

2
(1− a), (73)

and so also

α = r − g − λ+ r − g
a

− σ2

2
(1− a). (74)

Note that the latter expression is exactly formula (33) of the paper. In fact,
what we will argue is that when b1 = 0 it follows that a1 satisfies equation
(34) of the paper.

47



First note that by (73),

λ+ r − g
a1

− σ2a1
2

=
λ+ r − g

a2
− σ2a2

2
.

Thus

(λ+ r − g)
µ
a2 − a1
a1a2

¶
= (λ+ r − g)

µ
1

a1
− 1

a2

¶
=

σ2

2
(a1 − a2).

In other words,

a2 = −2(λ+ r − g)
σ2a1

. (75)

Now assume that b1 = 0, or in other words that b2 = α/(λ+ α). By (58)
we have that

σ2a1(a1 − 1)
2

= α(a1 − a2)λ+ r − g
λ

and thus (47) becomes that

α(a1 − a2)λ+ r − g
λ

+ (r − g − α)a1 − (λ+ r − g) = 0.

Substitute (74) and (75) and simplify, to get the equation

0 = a41 + a
3
1

·
2(λ+ r − g)

σ2
− 1
¸

+ a1

"
2

µ
λ+ r − g

σ2

¶2µ
2− σ2

r − g
¶#
− 4

µ
λ+ r − g

σ2

¶3
· σ2

r − g .

Or, writing

η =
2(λ+ r − g)

σ2
, δ =

σ2

2(r − g) , a = a1

we have
a4 + a3(η − 1) + aη2(1− δ)− η3δ = 0. (76)

But a = −η solves this equation, and factoring this out, we see that

a3 − a2 + aη − η2δ = 0, (77)
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which is exactly equation (34) of the paper.
By definition, we have that

η > 0, ηδ > 1 (78)

So what remains to be shown is that (77) has a unique root, under the
conditions (78).
But

a3 − a2 + aη − η2δ = (a2 + η)(a− 1)− η(δη − 1).
The first term has a unique root a = 1, and is strictly increasing on (1,∞).
Since η(δη−1) > 0 by (78), it follows that the equation (77) has a unique root
a as well. Of course this root also satisfies a > 1. It can be found numerically
very efficiently using Newton’s method. Note that it is also strictly less than
the value of a1 corresponding to α = αH . This can be seen directly from
the above equations: by (72), this a1 equals ηδ, and substituting ηδ into the
polynomial yields a strictly positive outcome.
To summarize, we have obtained equations that determine values 0 <

αL < αH < ∞ such that we can exhibit a solution to the optimal stopping
problem whenever α ∈ (αL,αH ]. But we have actually done more than this.
Taking α = αL, and W as in section ??, we have a solution to the PDE,
with L = ∞ and b1 = 0. Let 1 − k0 ∈ (0, 1) be the value determined by
equation (63). Then this W and α are easily seen to satisfy the conditions
of section ?? for every k ∈ [k0, 1]. Thus we have actually exhibited a solution
to the equation V0/v0 = 1 for every choice of k ∈ [0, 1]. By the uniqueness
argument of section ??, we have found the entire class of solutions.

6.10 αL, αM , and αH in general

In this section, we extend the previous arguments to the case λ2 6= 0, α2 6= 0.
We obtain computational formulae satisfied by αM and αL, and discuss the
complete solution to the optimal stopping problem. Finally we look at the
behaviour of these solutions in the limiting case, that g ↑ λ2 + r.
First observe that the general constraint giving rise to αL was (65). When

λ2 = 0 this was equivalent to having b1 > 0, which was the condition of the
paper, and of the preceding section.
Consider αH . As before, when L = 1 we have k = 0. To ensure that

L ≥ 1, it must be the case that substituting L = 1 in (64) gives a result that

49



is ≥ 0. In other words, we must have that

b2
a1 − a2
a1 − 1

·
1 +

λ2
λ1 + α

¸
≥ α1

λ1 + α
.

Thus by (58),

α1 ≤ b2 (a1 − a2)(λ+ α)

a1 − 1 =
λ1σ

2a1
2(λ+ r − g) . (79)

The expression of (47) is ≤ 0 for a ∈ [0, a1], so (79) is equivalent to

α1
λ+ r − g

λ1

·
2(λ+ r − g)

λ1σ2
α1 − 1

¸
+ (r − g − α1 − α2)2α1

λ+ r − g
λ1σ2

− (λ+ r − g) ≤ 0.

Or in other words,

2α21

·
λ+ r − g

λ1
− 1
¸
+ α1[−σ2 + 2(r − g − α2)]− λ1σ

2 ≤ 0.

Since λ2 + r − g > 0, this is equivalent to α1 ≤ αH , where

αH =
λ1

4(λ2 + r − g)
£
σ2 − 2(r − g − α2)

+
p
(σ2 − 2(r − g − α2))2 + 8σ2(λ2 + r − g)

i
. (80)

Turning to αM , the argument proceeds as before, except that now that
the constraint is that b2 < α1/(λ1 + α), or in other words, that

σ2a1(a1 − 1)
2

< α1(a1 − a2)
µ
λ+ r − g

λ1

¶µ
λ+ α

λ1 + α

¶
= (α− α2)(a1 − a2)

µ
λ+ r − g

λ1

¶µ
λ+ α

λ1 + α

¶
,

and thus by (47), that

(α− α2)(a1 − a2)
µ
λ+ r − g

λ1

¶µ
λ+ α

λ1 + α

¶
+ (r − g − α)a1 − (λ+ r − g) > 0.

50



By (47),

σ2

2
a(a− 1) + (λ1 + r − g)a− (λ+ r − g) = (λ1 + α)a > 0.

Multiplying these two inequalities, and substituting (74) and (75) leads to
a more complicated relation than before, but it may still be solved numeri-
cally to give a value for a1 as a root of a polynomial p(a), after which (79)
determines α and hence α1 = αM .
Carrying out this algebra using Maple yields the following form of the

constraint:

p(a)
(a− 1)σ6
8a2λ1

> 0,

where

p(a) = θa5 + a4
·
4λλ1
σ4
− θ(1 + θ) + η(3θ − ρ)

¸
+ a3η(η(η − ρ)− θ)

+ a2η2(η − ρ− 1) + aη3(η − ρ− 2)− η4. (81)

Here

η =
2(λ+ r − g)

σ2
, θ =

2(λ2 + r − g)
σ2

, ρ =
2(λ+ α2)

σ2
a = a1

In order for (81) to be really useful, we must verify that the corresponding
equation has a unique root a > 1.
Simplifying p(a), we can write it in the form

p(a) =
4λ1λ2
σ4

a4 + (a+ η)
h
(a− 1)(a3θ + η2(a2 + a+ η))− ηρa(a2 + η)

i
.

In consequence,

p(1) =
4λ1λ2
σ4

− ηρ(1 + η)2 < 0.

Since θ > 0, there will always be at least one root a > 1.
To address uniqueness, observe that

p(a)

a(a+ η)(a2 + η)

=
4a3λ1λ2

σ4(a+ η)(a2 + η)
− ηρ+

(a− 1)(a3θ + η2(a2 + a+ η)

a(a2 + η)
.
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Taking derivatives in Maple gives the following expression:

4a2λ1λ2η(2a+ a
2 + 3η)

σ4(a+ η)2(a2 + η)2
+
aθ(a3 + aη + 2η(a− 1))

(a2 + η)2

+
η2(2a3 + 3a2η + η2)

a2(a2 + η)2
,

each term of which is seen to be non-negative when a > 1. Thus p(a) has
exactly one such root. We denote the corresponding value of α1 by αM .
In combination with the results of section ??, we have therefore obtained
a solution to the optimal stopping problem with 1 ≤ L < ∞, for every
α1 ∈ (αM ,αH ].
If λ2 > 0, the results of section ?? provide a value αL < αM and exhibit

solutions to the optimal stopping problems with L = ∞, for every αi ∈
[αL,αM ]. Thus solutions have actually been found for α1 ∈ [αL,αH ]. If (69)
is nonegative when α1 = 0, then αL = 0. Otherwise, αL is the value of
α1 making (69) vanish. Either way, the uniqueness argument of section ??
shows that we have found the entire class of solutions.
Similarly, if λ2 = 0, we set αL = αM and apply the results at the very end

of (??) (which were actually derived with α2 = 0, but the same arguments
work when α2 > 0). Again, a range of solutions was obtained for α1 = αL,
which completes the description of the full class of solutions.
To close this section, we consider what happens in the limiting case, that

g ↑ r + λ2. First of all, from (80), it is clear that αH → ∞, as g ↑ r + λ2.
Similarly, as θ ↓ 0, p(a) converges to

a4[
4λλ1
σ4

+−3ηρ] + a3η2(η − ρ) + a2η2(η − ρ− 1) + aη3(η − ρ− 2)− η4,

where η = 2λ1/σ
2 < ρ. Since every term of the latter is negative, the

positive root of p(a) must be diverging to ∞ in the limit, and thus so does
αM . Finally, consider αL. We may as well assume that λ2 > 0. Consider the
limiting form of (69). By (57) and then (47), it is

1− k = −1
λ2(a1 − a2) [a1(α+ λ2) + λ1 − (α1 + λ2)(a1 − a2)]

=
−1

λ2(a1 − a2) [α2(a1 − a2) + λ1 + a2(α+ λ2)]

=
−1

λ2(a1 − a2)
·
α2(a1 − a2) + σ2

2
a2(a2 − 1)

¸
< 0
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In consequence, every α1 is eventually < αL, so that αL → ∞. Of course,
this asymptotic implies those for αM and αH , but it is also useful to see these
directly.

6.11 Commentary on Section 3: TEDF

In the calculation of the total expected discounted fees, at the end of Sec-
tion 3, we have τ (the time of death) an exponential time with mean 1/λ,
independent of the price process. The lapsation time is denoted ξ, which is
a stopping time with respect to the filtration of Ut, namely the first hitting
time of L by Yt. In other words, the first time Ut equals Le

gt. We will follow
the calculation under the assumption that λ2 = α2 = 0. As in the paper,

TEDF =
h
1− Ẽ0

£
R−1ξ∧τUξ∧τ

¤i
+ Ẽ0

£
R−1ξ kUξ, ξ < τ

¤
= 1− Ẽ0

£
R−1ξ Le

gξ, ξ < τ
¤

− Ẽ0
£
R−1τ Uτ , ξ ≥ τ

¤
+ Ẽ0

£
R−1ξ kLe

gξ, ξ < τ
¤

= 1− (1− k)LẼ0
£
R−1ξ e

gξ, ξ < τ
¤− Ẽ0 £R−1τ Uτ , ξ ≥ τ

¤
. (82)

Consider the second term in (82). Write t for the filtration of Ut. By
independence,

Ẽ0
£
R−1ξ e

gξ, ξ < τ
¤
= Ẽ0

h
e−(r−g)ξP̃0(ξ < τ |ξ)

i
= Ẽ0

£
e−(r−g+λ)ξ

¤
.

The latter can be read off as a Laplace transform of a passage time for a
Brownian motion with drift. Alternatively, since

a21σ
2

2
+ a1(r − g − α− σ2

2
)− (r − g + λ) = 0,

we have that

Ẽ0
£
e−(r−g+λ)ξ

¤
= Ẽ0

·
e−a1(r−g−α−

σ2

2
)ξ−a21σ

2

2
ξ

¸
= Ẽ0

·
(e−gξUξ)

−a1e−
a21σ

2

2
ξ+a1σB̃ξ

¸
= L−a1.
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Thus the second term (82) equals

−(1− k)L1−a1.

Turning to the third term in (82), we have by the martingale property
that

Ẽ0
£
R−1τ Uτ , ξ ≥ τ

¤
= Ẽ0

h
eσB̃τ−σ2

2
τe−ατ , ξ ≥ τ

i
= Ẽ0

h
eσB̃ξ−σ2

2
ξe−ατ , ξ ≥ τ

i
= Ẽ0

h
eσB̃ξ−σ2

2
ξẼ0

£
e−ατ , ξ ≥ τ |ξ

¤i
.

Since τ has an exponential distribution, a simple integration shows that this
equals

Ẽ0

·
eσB̃ξ−σ2

2
ξ · λ

λ+ α
(1− e−(λ+α)ξ)

¸
=

λ

λ+ α

³
E0
h
eσB̃ξ−σ2

2
ξ
i
− E0

h
eσB̃ξ−(α+λ+σ2

2
)ξ
i´

=
λ

λ+ α

¡
1−E0

£
Uξe

−(r+λ)ξ¤¢
=

λ

λ+ α

¡
1−E0

£
Le−(r−g+λ)ξ

¤¢
=

λ

λ+ α

¡
1− L1−a1¢ .

Finally, we combine the above expressions, to get that

TEDF = 1− (1− k)L1−a1 − λ

λ+ α

¡
1− L1−a1¢

=
α

λ+ α

¡
1− L1−a1¢+ kL1−a1 ,

which is the formula given in the paper.
End of Appendix.
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