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Abstract

We use No Arbitrage techniques to value an insurance feature available on many variable

annuity (VA) policies called a Guaranteed Minimum Withdrawal Bene�t (GMWB). The

GMWB is portfolio insurance on an internal rate of return, as opposed to a guaranteed

point-to-point investment rate of return. They are typically sold to retail investors, can not

be easily traded in the secondary market and have penalties associated with early surrender.

Like all VA policies � and in contrast to standard exchange traded options � insurance

companies charge for this protection by deducting an ongoing fraction of assets, as opposed

to an up-front fee.

Given all these non standard elements, we provide two extreme approaches to analyzing,

valuing and managing the risk a GMWB. First, we take a static actuarial approach that

assumes individual investors behave passively in utilizing the guarantee. In this case we show

the product can be decomposed into a Quanto Asian Put plus a generic term-certain annuity.

The opposite assumption is that investors are dynamically rational and seek to maximize

the embedded option value by lapsing (a.k.a. surrendering or terminating) the product at

an optimal time, i.e. once the expected present value of fees exceed the present value of

bene�ts. We label this the dynamic �nancial approach, which leads to an optimal stopping

problem akin to pricing an American put option, albeit complicated by the non-traditional

payment structure.

Our main numerical result is that under a typical product speci�cation which guarantees

a 7% withdrawal, and assuming investment volatility of � = 20%, the theoretical cost of

providing a GMWB ranges from 73 to 160 basis points of assets per annum, with the variation

depending on the degree of what we label, lapsation rationality. In contrast to our estimates,

recent GMWB products are only charging 30 to 50 basis points, even though the underlying

annuity sub-accounts contain high-volatility investment choices. We suggest a number of

reasons for the apparent under-pricing of this particular feature.

JEL Classi�cation: G22
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1 INTRODUCTION AND MOTIVATION

Insurance companies in the U.S. have recently introduced a new type of �nancial guarantee

into their already complex variable annuity (VA) policy line-up, called a Guaranteed Min-

imum Withdrawal Bene�t (GMWB). VAs are very similar to mutual funds which bundle

individual securities, such as stocks and bonds, into diversi�ed units or trusts. Aside from

their legal classi�cation as an insurance policy as opposed to a registered security, VAs pro-

vide tax sheltered growth, but also embed a number of put-like derivative products that

provide minimal guarantees on the account value at the earlier of maturity or death. See

Milevsky and Posner (2001) or Brown and Poterba (2004) for a discussion of the features and

reasons underlying the demand for variable annuities, and the possible relation to income

taxes.

A recent innovation in this market, the GMWB, contains absolutely no life insurance

component and is thus well within the domain of analysis of classical �nance. The GMWB

promises a minimal payout level from an initial investment capital �akin to a systematic

withdrawal plan (SWiP) �for a �xed period of time, regardless of the performance of the

underlying policy supporting the variable annuity. Typically, the policyholder might be

guaranteed the ability to withdraw at least $7 per annum per $100 of initial investment until

the original $100 have been fully exhausted. Thus, if the market performed poorly �and

especially in the early years when the VA is purchased �the investor would be guaranteed a

minimal weighted average return. Like all VA riders, and in contrast to standard exchange

traded options, insurance companies charge for this downside protection by deducting an

ongoing fraction of assets. These unique features di¤erentiate the pricing of this derivative

security from the standard Black-Scholes (1973) approach, where the option premiums are

paid up-front and in advance.

The GMWB is not a trivial wrinkle in a small market. In fact, it is being o¤ered by

a growing number of insurance companies, although each with its own peculiar and distin-

guishing features1. The contribution of this paper is to (a) use No Arbitrage techniques

to analyze insurance features in Variable Annuities, an area that has not received nearly

as much academic attention as the mutual fund market, despite its $1 trillion size, and

1At last count, we found 12 di¤erent companies o¤ering GMWBs on their Variable Annuities. They

are: Lincoln National, Jackson National, Je¤erson National, Paci�c Life, Transamerica, ING Golden Amer-

ica, Manulife Financial, Sun Life of Canada, Hartford Life, American Skandia (via Prudential Financial),

Travelers and USAllianz.
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(b) provide two extreme approaches to analyzing, valuing and managing the risk a GMWB

that are predicated on the degree of investor rationality in this market. Indeed, it is now

well established that individual retail investors do not adhere to most the basic tenets of

economic optimality. For example, Benartzi and Thaler (2001) document that investors in

401(k) pension plans use simple 1/n heuristics to select mutual funds as opposed to using a

mean-variance approach to diversify their portfolio. Other papers in the behavioral �nance

literature provide evidence that consumers can not be relied upon to optimally exercise �-

nancial options, such as executive and incentive options. This, of course, should impact the

pricing of any (illiquid, non tradeable) derivative security o¤ered to retail investors where

a portion of the value is based on the counter-party optimally exercising the option. Our

valuation algorithm is more than just a theoretical exercise to derive an abstract price for an

illiquid instrument. The liability created by GMWBs should have a direct and measurable

impact on the amount of capital (and reserves) insurance companies should be required to

hold against these guarantees. Traditionally insurance companies have relied on the law of

large numbers to set reserves which cover the risks (1 � ")% of the time. But as insurance

companies venture into o¤ering products which merge life insurance and �nancial (down-

side) protection, there is a need to value the �nancial economic risks they are undertaking,

especially given the recent movement towards fair value accounting and risk-based capital in

the insurance industry.

In this paper we present two extreme valuation algorithms �both within the framework

of No Arbitrage pricing �for pricing the GMWB. First take a static actuarial approach that

assumes individual investors behave passively in utilizing their guarantee. In this case we

show how the rider can be decomposed into a Quanto Asian Put (QAP) plus a generic term-

certain annuity. We believe this bifurcation has not been previously known in the literature

and this obviously allows the insurance company to use QAPs to hedge the product. We rely

on numerical techniques to price the embedded Asian options �see for example Turnbull

and Wakeman (1991) or Milevsky and Posner (1998) for a review of the various approaches

�and we provide numerical estimates for the value or hedging cost of the GMWB under this

static actuarial approach.

The opposite assumption is that all investors buying these GMWB features are dynami-

cally rational and seek to maximize the embedded option value by lapsing (a.k.a. surrender-

ing or terminating) the product at an optimal time, i.e. once the expected present value of

fees exceed the present value of bene�ts. We label this the dynamic �nancial approach, and
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its analysis leads to an optimal stopping problem akin to pricing an American put option,

albeit complicated by the non-traditional payment structure. We formulate the optimal

boundary as a linear complementarity problem and then use numerical PDE techniques to

obtain pricing results.

Our main practical result is that under a stylized product speci�cation which guarantees

a 7% withdrawal, and assuming historical investment volatility of � = 20%, the cost of

providing a GMWB ranges from 73 to 160 basis points of assets per annum, with the variation

depending on the degree of what we label, lapsation rationality. Of course, our pricing does

not allow for any pro�ts, commissions, fees and transaction costs, akin to the celebrated

Black-Scholes formula. Yet, in contrast to our estimates, we �nd the recent GMWB products

that have been introduced in the market are only charging 30 to 50 basis points, even

though the underlying annuity sub-accounts contain high-volatility investment choices. This

conclusion is especially puzzling given the evidence provided in Milevsky and Posner (2001)

that most return-of-premium riders on variable annuities are grossly over-priced.

During the last ten years there has been nothing short of an explosion of exotic options

and �nancial guarantees that are being embedded within insurance policies. In fact, some

have argued, for example Boyle (2003), that the options embedded within insurance policies

are even more complex than those in standard OTC and exchange traded contracts. And,

while the rationale for this phenomena requires some justi�cation, the embedded options are

at times quite challenging to price, value and hedge. Historically, they have been analyzed

by a variety of academics and practitioners under the label of equity-linked policies, starting

with the extension of Black-Scholes (1973) by Boyle and Schwartz (1977), and more recently

Persson and Aase (1997), Gerber and Shiu (1999) as well as Milevsky and Posner (2001)

and Windcli¤, Forsyth and Vetzal (2001). In fact, we count more than 60 published papers

�most of them from the insurance perspective �written on the topic within the last ten

years alone. For a selected bibliography and recent book on the topic, we refer the interested

reader to Hardy (2003). But, as mentioned earlier, the contribution of the paper is to take a

�nancial economic approach to the (new) GMWB features that di¤erentiates between various

forms of rationality and contrast these values with actual pricing in the market.

The remainder of the paper is organized as follows. The next sub-section 1.1 provides a

numerical example to explain the mechanics of a GMWB. In Section 2 we provide a stochastic

modeling framework for the GMWB and discuss the real-world probability the feature will

end-up "in the money". This metric will likely be used when computing a traditional insur-
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ance reserve for the guarantee. Section 3 provides the static actuarial analysis of the GMWB

by decomposing the product into a term-certain annuity and a Quanto Asian Put. We also

provide some numerical examples. Section 4 illustrates the dynamic �nancial perspective by

solving the relevant optimal stopping problem and Section 5 concludes the paper.

1.1 Numerical Example of Product Speci�cs

Table #1 provides a numerical example of the payo¤ from a GMWB rider, assuming a

particular sequence of quarterly investment returns for a typical variable annuity (VA) policy.

The example assumes an initial investment of $100 and a guaranteed withdrawal of $7 per

annum, which is $1.75 per quarter. At the end of each quarter an investment return is

recorded and applied to the previous end-of-quarter�s account balance. Thus, for example,

after the �rst quarter of negative 12.24%, the balance in the VA policy was $87.76, then $1.75

was withdrawn. The next quarter resulted in a positive 10.06% return, and the account grew

to $94.66, etc.

TABLE #1 Placed Here

Under this particular sequence, the option payo¤ starts at the end of the �rst quarter

of the seventh year where the policy balance has fallen to a mere 0.17 dollars. Under a

standard systematic withdrawal plan there is no longer enough to withdraw the requisite

$1.75 per quarter and the policy is therefore �ruined�. In fact, under this particular state

of nature, the total amount withdrawn up to and including the �rst quarter of the seventh

year is $45.42, due to the mostly poor performance of the investments during the �rst few

years. The GMWB kicks-in and continues to provide an income of $1.75 until the entire

$100 has been returned. Note that the entire $100 will be returned in exactly 100=1:75 =

57: 14 quarters which is 57:14=4 = 14: 285 years. At the end of 14.28 years the entire sum

is returned and the guarantee matures. The insurance company backing the VA policy and

the guarantee would be �on the hook�for the remaining 100� 45:22 = 54: 78 dollars, albeit
paid over the remaining seven years.

Note that Table #1 represents but one of many millions of possible scenarios for the

14.28 years of the guarantee�s life. Figures #1, #2 and #3 illustrate three other possible

scenarios.

FIGURE #1, #2, #3 Placed Here

4



In the �rst one, the account is driven to a zero value at the beginning of the �fth year,

and the insurance company pays the remaining $1.75 per quarter until time 14.28. In the

second case, the funds are exhausted in the middle of the eleventh year and the insurance

company makes three years of additional payments. In the �nal case the variable annuity

survives a 7% withdrawal for 14.28 years and the company is relieved of its obligations.

The option appears quite novel upon �rst inspection, since it starts paying-o¤at a random

ruin time for the underlying investment-net-of-withdrawal process. A random maturity

option was �rst analyzed by Carr (1998), but the product speci�cs are quite di¤erent since

the random maturity (ruin time) in our product is determined endogenously and thus closer

to a barrier option. We will discuss the precise nature of the embedded option in Section 3.

The next section will set-up the model and examine the odds the GMWB feature will payo¤.

2 MODELING FRAMEWORK

Let Wt denote the market value of the underlying VA at any future time t � 0, with an

arbitrary (but innocuous) assumption that w0 = 100 dollars. The most typical GMWB

structure is that the policyholder is guaranteed to be able to withdraw at least G = gw0 = 7

dollars per annum. The guarantee remains in e¤ect until the entire $100 has been disbursed,

which at a minimum is a period of 100=7 = 14: 28 years. Thus, even in the extreme scenario

where the initial w0 = 100 collapses to a zero value one day after the policy is purchased, the

investor will be made whole, albeit over an extended period of 14.28 years. Of course in any

given year the policyholder is entitled to withdraw an amount less than G = 7 dollars, which

would extend the life of the guarantee. Or, the policyholder could withdraw an amount

greater than G = 7 dollars which would reduce both the value and life of the guarantee.

These cases where the policyholder withdraws more or less than suggested by the guarantee

�which falls under the category of dynamic strategies �will be carefully addressed in Section

4. In this section, we proceed by assuming the policyholder withdraws no more and no less

than the G = 7 dollars per annum. This is called the passive actuarial approach.

Following most of the modern option pricing literature, we assume the actual dynamics

of the VA policy �including withdrawals �obey the following stochastic di¤erential equation

(SDE). The value of the VA sub-account, gross of any withdrawals, obeys:

dSt = (�� �)Stdt+ �StdBt: (1)

This is a standard modeling assumption that is used when pricing �nancial options. The
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symbol Bt denotes a standard Brownian motion with mean zero and variance t. The para-

meter (mu) � is the real-world expected growth rate of the investment (net of withdrawals),

the parameter � captures the insurance fee that pays for the guarantees, and �nally (sigma)

� represents the volatility of the investment return.

The individual is assumed to invest W0 = w0 in a variable annuity, and so the dynamics

of the actual VA policy is de�ned by:

dWt = dSt � tdt; (2)

where 0 � t � Wt represents the withdrawals from the account, which can range from a

low of zero, to as high as the actual account value Wt. In what follows, we assume that the

withdrawal amount is exactly equal to the guaranteed amount t := G, which is what we

label the passive actuarial approach. In section 4 we remove the restriction and investigate

the impact of assuming �exibility in the withdrawal rate. In the simple case,

dWt = (�� �)Wtdt�Gdt+ �WtdBt; W0 = w0: (3)

Using standard techniques which can be veri�ed by Ito�s lemma �see Karatzas and Shreve

(1992) for details �the solution to the SDE in equation (3) can be written as:

WT = e
(���� 1

2
�2)T+�BT

�
w0 �G

Z T

0

e�(����
1
2
�2)t��Btdt

�
(4)

The �rst thing to note about the dynamics in equation (3) and (4) is that since G > 0,

which means that the process includes a forced dollar consumption, the value of Wt can

in fact hit zero at some point t > 0. Although the exponential Brownian motion term is

always positive, as soon as the integral term in equation (4) exceeds w0=G, the quantity in

the brackets will become negative. This is in contrast to a standard geometric Brownian

motion, which is the term multiplying the brackets in equation (4) that can never hit zero

in �nite time. The guaranteed ability to withdraw G per annum until time T = w0=G, is

of value if and only if the process Wt hits zero prior to T . Indeed, for those sample-paths

on which the ruin time occurs after T , the embedded put option has a zero payout since

the minimum withdrawal would have been satis�ed endogenously, even without an explicit

guarantee provided by the insurance company.

Given the importance of the ruin time in the classi�cation and understanding of this

guarantee, we introduce the following notation for the probability of ruin of the process Wt,

within the time period [0; t]: The function (xi) �t is:

�t = Pr

�
inf
0�s�t

Ws � 0
�
= Pr

�Z t

0

e�(����
1
2
�2)s+�Bsds � w0

G

�
:= Pr[Xt �

w0
G
]; (5)
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where the new term Xt is de�ned equal to the integral in the middle of equation (5). The

seemingly counter-intuitive relationship between the in�mum of a process and the integral

of an exponential Brownian motion, comes from the fact that equation (4) can only become

negative once the integral Xt is greater than w0=G. Note also the fact that Xt is monotoni-

cally increasing in t. Thus, once Xt exceeds w0=G, which means that Wt < 0, it can never

recover and go above zero.

It is quite easy to demonstrate that the probability of ruin �t is increasing in the with-

drawal rate G; and likewise, the greater the value of time t, the higher is the probability

of ruin. In fact, although it is beyond the scope of the current analysis, one can actually

obtain a precise analytic expression for �t when t!1. In the current context we are most
interested in the value of �T where T = w0=G. In other words, we would like to know what

the odds are that the investor would actually run out of money by the end of the guarantee

period, assuming they withdrew the guaranteed amount.

2.1 The Real-World Probability of Ruin

Assume the arithmetic average return is expected (after management fees but prior to insur-

ance fees) to be � = 9% per annum jointly with a historical market volatility of � = 18%.

According to Morningstar statistics as reported by Milevsky and Posner (2001), the median

sub-account volatility for the universe of variable annuity policies is 18%, with a 25th per-

centile of 16% and a 90th percentile of 25%. To be clear, these parametric assumptions imply

that the continuously compounded rate of return (a.k.a. the instantaneous growth rate of the

investment) is assumed normally distributed with a mean value of 0:09� (0:18)2=2 = 7:38%
and a standard deviation of 18%. Under a normality assumption, two thirds of the time the

investment return will fall in a range of 7:38% + 18% = 25: 38% and 7:38% � 18% = �10:
62% which is consistent with broad-based U.S. indices. Also, we let the insurance fee for

this particular rider alone be set to � = 0:40% per annum, which is consistent with current

market pricing of these products. In this case, the parameterized dynamics of the investment

become:

dWt = ((0:086)Wt � 7) dt+ 0:18WtdBt; w0 = 100: (6)

Using numerical PDE methods or moment matching approximations �described at greater

length in Huang, Milevsky and Wang (2004) �to obtain the ruin probability during the �rst

T = 14:28 years we �nd that �14:28 = 11:7%. In other words, there is approximately an 88%
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chance that even if the policy holder withdraws the maximum allowable amount each year,

the policy will survive to the end of the guaranteed horizon.

However, if we increase the investment return volatility to � = 25% per annum, the ruin

probability increases to �14:28 = 26:2%. And, if we reduce the expected (arithmetic average)

return to � = 6% and maintain a high � = 25% volatility, the probability of ruin increases

to �14:28 = 39:9%, which are clearly non-trivial amounts. Table #2 displays the probabilities

under various risk and return combinations.

TABLE #2 Placed Here

Note that if the expected investment return is increased to � = 12% and the volatility

of the return is set to 10%, the probability the withdrawals of G = 7 dollars per annum will

actually exhaust (or ruin) the policy prior to time T = 14:28 is less than one half of a percent.

The probability of ex ante usage range from 1% to 20% depending on the subjective asset

return assumption and characteristics, these will impact the setting of traditional insurance

reserves. The relevant question we are interested in is: How much does it cost the insurance

company to hedge this guarantee? This will determine the �nancial economic value of the

guarantee to the holder.

3 STATIC ACTUARIAL ANALYSIS

In this section we illustrate how to bifurcate the product into a collection of strip-bonds (or

a term-certain annuity) and a complex option in the form of a Quanto Asian Put. Note that

g = G=w0 and by de�nition T = 1=g (since the product terminates or matures when all the

funds have been returned) and so we have that

WT = w0e
(���� 1

2
�2)T+�BT

�
1� 1

T

Z T

0

e�(����
1
2
�2)s��Bsds

�
: (7)

The payo¤ of the GMWB option is:

Option Payo¤ := e�rT max[WT ; 0]; (8)

since the holder of the variable annuity policy is guaranteed to receive any remaining funds in

the account at time T = 1=g. Remember that the policyholder is also entitled to the periodic

income �ow in addition to the (possibly zero) maturity value of the account. Thus, focusing
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on the future value of all cash-�ows and payments, the maturity value of the periodic income

is:

w0g

Z T

0

ertdt =
w0g

r

�
erT � 1

�
(9)

The (No Arbitrage) time-zero present value of the GMWB cash-�ow package is therefore:

e�rTEQ [max[WT ; 0]] +
w0g

r

�
1� e�rT

�
: (10)

where EQ[:] denotes the expectation under the Q-measure, under which the real-world drift

� is replaced by the risk-free rate r. We refer the interested reader to any standard textbook

on derivative pricing to justify this substitution of measures.

Finally, for the GMWB to be fairly priced we must have at inception that the amount

invested in the product w0, is greater than or equal to the value of the cash-�ow package,

where T = 1=g.

w0 � e�r=gEQ
�
max[W1=g; 0]

�
+
w0g

r

�
1� e�r=g

�
: (11)

Equation (11) is one of our main results. It says that for the product to be fairly structured,

the initial purchase price must equal the cost of the term-certain annuity plus the exotic

option. For any given (r; �) we can locate the (�; g) curve across which the product is fairly

priced, which implies equality in equation (11).

We further claim that the option component is e¤ectively a Quanto Asian Put (QAP)

de�ned on an underlying security which is the inverse of the account price process. To

illustrate this, de�ne a new (reciprocal) process:

Yt = S
�1
t = e�(r���

1
2
�2)t��Bt ; Y0 = 1; (12)

One can think of Yt as the number of VA sub-account units that one dollar can buy, akin

to the number of Euros or Yen than one dollar can purchase in the currency market. The

inverse, St = Y �1t , is the value of one VA sub-account unit in dollars, or the price of one

Euro or Yen in USD. Now let:

A :=
1

T

Z T

0

Ytdt; Y := YT (13)

The payo¤ from the GMWB option is:

Option Payo¤ := w0
max[1�A; 0]

Y
(14)

This represents w0 units of a Quanto (Fixed Strike) Asian Put option. In sum, scaling every-

thing by the initial premium, a fairly priced product at inception implies the relationship:

e�r=gEQ

�
max[1�A; 0]

Y

�
+
g

r

�
1� e�r=g

�
= 1 (15)
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Thus, our main qualitative insight is that under a static actuarial perspective, this prod-

uct can be decomposed into the following items:

1. A term-certain annuity paying G per annum for a period of T = w0=G years, plus

2. A Quanto Asian Put (QAP) on the above-mentioned reciprocal variable annuity ac-

count.

For example, for an initial deposit of w0 = 100 at a guarantee withdrawal rate of G = 7

per annum and an interest rate rate of r = 0:06, the time-zero cost of the term-certain

annuity component is 67:15 dollars. The remaining 32:85 would go towards purchasing the

option. One can think of a VA with a GMWB as consisting of 67% term-certain annuity

and 32% Quanto Asian Put option. In contrast, at a (lower) interest rate of r = 0:05 the

cost of the term-certain annuity would be (a higher) 71:46 dollars and only 28:54 would go

towards purchasing the required option.

TABLE #3 Placed Here

Table #3 displays the required insurance fee that would lead to an equality in equation

(11) under a number of di¤erent volatility values. We price the Asian option using a nu-

merical technique which is described in the appendix. For example, if the VA guarantees

a 7% withdrawal, and the pricing volatility is � = 20%, the fair insurance fee would be

approximately 73 basis points of assets per annum. Stated di¤erently, a �nancial package

which o¤ers a stream of $7-per-annum income (in continuous time) plus a Quanto Asian Put

that matures in exactly T = 14:29 years is worth exactly w0 = 100, when the investment on

which is the option is struck is �leaking�a dividend yield of 73 basis points per annum. If

the guarantee is reduced to g = 4% �which implies the product matures in T = 25 years

� the fair insurance fee is only 23 basis points. Likewise, if the guarantee is increased to

g = 9% �which implies the product matures in T = 11:11 years �the fair insurance fee is

117 basis points. As we mentioned in the introduction, the most common GMWB guarantee

being o¤ered on variable annuities is g = 7%, which (even) under a conservative � = 15%

volatility implies an insurance fee of 40 basis points.

3.1 Lapsation and Mortality

The possibility of irrational policyholder lapsation and early death will only serve to reduce

the value and hedging cost of the guarantee. Indeed, if we assume the guarantee will be
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terminated upon death of the policyholder who is currently aged x �and the bene�ciary of

the VA only receives the market value at the time of death �then the term-certain annuity

must be replaced with a life annuity that terminates at T = w0=G: In this case, the time

zero cost becomes:

Cost of Term-Certain Annuity =
Z T

0

G(tpx)e
�rtdt �

Z T

0

Ge�rtdt; (16)

and thus, mortality will reduce the marginal cost of providing the guaranteed GMWB. A

popular analytic representation for (tpx) that can be used to price equation (16) is the

Gompertz-Makeham law of mortality. See Carriere (1994) for details under which the con-

ditional survival probability is:

(tpx) = e
(b�x(1�et=b)); �x = �+

1

b
e(x�m)=b; (17)

where b is a scale parameter and �x is the instantaneous hazard rate and the implicit � and

m are pre-speci�ed constants. And, if we further assume a constant annual lapsation rate

of h, which implies that only a fraction expf�hTg will actually hold the VA to the end of
the T = w0=G years. In general, if we let T denote the earlier rate of death and lapsation,

the capital market (i.e. No Arbitrage) time-zero value of product under a static actuarial

approach is:

e�rTEQ [WT; 0] +

Z T

0

Ge�rtdt; (18)

where the random variable (stopping time)T is the earlier of death, lapsation or 1=g. In sum,

although Table #3 provides a value (or hedging cost) for the GMWB under the assumption

that everyone �behaves� exactly as predicted, in reality the insurance company can push

the pricing to even lower levels by assuming a fairly high (real world) probability that the

random variable T < 1=g: This fact might explain the reason why observed GMWB fees

in practice appear lower than dictated by Table #3. Of course, an alternative reason for

apparent underpricing is that the base insurance fee on the VA product without the rider is

enough to subsidize the extra cost of the relatively more expensive GMWB. Of course, all of

this is predicated on the static actuarial approach that policyholders do not deviate from the

t = G dollars per annum withdrawal. But, in fact, it might make sense for the policyholder

to withdraw more or less than the minimum, even if it reduces the base of the guarantee, if

the account has performed su¢ ciently well, making the original guarantee less valuable. It

is not clear a priori the conditions under which this would make sense. This bring us to the

next section which covers the pricing of these guarantees in perfect and complete �nancial

markets where all counter-parties are fully rational and �option value�maximizers.
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4 DYNAMIC FINANCIAL HEDGING

In this section we employ classical American option pricing techniques to obtain a dynamic

model of the GMWB, assuming policyholders are fully rational and lapse (i.e. withdraw

more or less from) the product when it is to their economic advantage. As we argued in the

introduction to the paper, the true �cost�of the embedded guarantee lies somewhere between

the static actuarial embedded option cost and the dynamic �nancial hedging cost.

It is important to note that once we include strategic lapsation as an option for the

policyholder, the contingent deferred surrender charge (DSC) becomes an important factor

in driving optimal behavior. Recall that most variable annuities impose a penalty if the

product is lapsed or surrendered prior to maturity. This penalty is calculated as a fraction of

the account value at the time of surrender, and can range from 10% to 0% depending on the

product, company, and the time that has elapsed since the policy was acquired. And, while

current practice in the industry is that the DSC goes exclusively towards paying commissions

and brokerage fees �and is not used for risk management or hedging purposes �this penalty

does induce the policyholders to continue holding the product and paying the ongoing asset-

based management fees, even though the embedded option is far out-of-the-money. From

a dynamic point of view, we must therefore work with a DSC curve or schedule in any

optimal stopping model that attempts to capture the salient features of the product. We

refer the interested reader to Milevsky and Salisbury (2001) for an in-depth analysis of the

interaction between contingent deferred surrender charges (DSC) and the proper hedging of

variable annuity secondary guarantees that are paid with an asset-based fee. In this paper

we simply use a parametric version of this DSC and optimize around this curve.

4.1 The American Put Option

We begin by reviewing the required notation and background from the theory of American

option pricing which we use in our model. We let Vt denote the value of a contingent claim,

which depends on the traded underlying security price St.

Vt � f(St); 8t

V� = f(S� ): (19)
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In a complete market �where the proper premium has been charged �the seller of protection

is hedged against the worst-case scenario. The security price process obeys:

dSt = rSt dt+ �St d ~Bt; (20)

where ~Bt = Bt + t(� � r)=�. De�ne a new probability measure Q by re-weighting the

probabilities so that ~Bt is a Brownian motion under Q , which is the risk neutral probability

measure. It follows by Itô�s formula that e�rtSt is a martingale under Q. This implies that

the discounted value e�rtVt of any self-�nancing portfolio is as well. Equivalently

dVt = rVt dt+ dMt (21)

where Mt is a Q-martingale. To price, we look for an Mt such that Vt dominates f(St) for

every t. The cash �ow from the hedge, if exercised at a stopping time � is f(St) dR
�
t , where

R�t =

8><>:1; t < �

0; t � �
(22)

The hedge, incorporating the payout, satis�es

dVt = rVt dt+ dMt + f(St)dRt: (23)

With optimal exercise (ie � = �), Mt will be a Q-martingale. In general � even with

suboptimal exercise �it will be a Q-supermartingale. On the other hand, the value of hedge

should be a function of the stock price, dropping to zero after exercise:

Vt = v(t; St)Rt: (24)

Substituting into Itô�s formula gives:

dVt =
h
vt + rStvx +

�2S2t
2
vxx

i
dt+ vdRt + �Stvx d ~Bt: (25)

Equating the two expressions,h
vt + rStvx +

�2S2t
2
vxx � rv

i
dt+

h
v � f(St)

i
dRt = dMt � �Stvx d ~Bt: (26)

The RHS is a supermartingale in general, and a martingale under optimal exercise. Since

the LHS is of bounded variation, it must be � 0 in general, and = 0 under optimal exercise.
That is,

vt + rxvx +
�2x2

2
vxx � rv � 0f � v � 0 (27)

with at least one holding with equality. This is a linear complementarity problem �a.k.a.

free boundary value problem �whose solution can be found numerically to give the option

price. With this background, we now return to the pricing of the GMWB.
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4.2 Hedging the GMWB

Let Wt be the value of the variable annuity account with a guaranteed minimum withdrawal

bene�t (GMWB) rider. Associated with this extra guarantee is the insurance fee �% and

the contingent deferred surrender charge (CDSC) of �%. As in the static case, these fees

are imposed solely for hedging purposes. The GMWB allows up to Gdt to be withdrawn in

time dt, so the CDSC applies only to withdrawals in excess of Gdt. The nominal withdrawal

rate G is set as being a �xed percentage g, of the initial account value w0. The terms of

the GMWB contract specify that as long as the rate of withdrawals stays below G, the

account holder may eventually accumulate withdrawals of At from the account, even if doing

so would ordinarily drive the account to zero. Initially the guarantee level equals the account

value, A0 = x0(= W0). But Wt then �uctuates. Withdrawals decrease both Wt and At. If

withdrawals ever occur at a rate higher than G, then not only is the CDSC imposed, but

after the guarantee level and account value are debited by the withdrawal, the guarantee

level is reset to the smaller of its value and the account value. As argued in the introduction,

these provisions are idealized versions of ones from several existing variable annuities. Other

terms could be analyzed the same way, for example with a CDSC that varies with time, or

with provisions for resetting the withdrawal rate G.

Mathematically, we use the same GBM model (as in the static section) for Wt:

dWt = (r � �)Wt dt+ �Wt d ~Bt � t dt (28)

under the Q-measure. Here t models continuous withdrawals from the account, which may

or may not equal the allowed amount G. Similarly

dAt = �t dt provided t � G = gx0; (29)

but if t > G dollars, then At jumps to min(At;Wt). There are similar expressions in the

case of lump-sum withdrawals � > 0, but for simplicity sake we will carry out the analysis

in the continuous case only. We wish to hedge this account. Write Vt = v(At;Wt) for the

value of the hedge. Insurance and DSC fees are retained in the hedge, so

dVt = rVt dt+ dMt � f(t) dt; where

f(t) =

8><>:t; if t � G

G+ (1� �)(t �G); if t > G
(30)
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An analysis similar to that of the American option lets us solve numerically for the

hedging cost v(a; w) by solving a free boundary value problem numerically. In contrast to

the classical American put, there is no longer an initial fee on which to base the hedge �the

initial value of the hedge is constrained to equal the initial account value, so the hedge must

be �nanced through the insurance fee and DSC. In fact, our real problem is to determine,

for a given value of � of the DSC, what is the � that allows the guarantee to be hedged. In

mathematical terms, we carry out an interactive solution and locate a �xed point in terms

of �. For a given � we solve the free boundary value problem to give an initial hedging cost

v�(w0; w0). We then adjust �, resolve the PDE, readjust �, etc., to converge on the value of

� that makes

v�(w0; w0) = w0: (31)

In principle, this might give an � that depends on the initial investment. But recalling

that G is a linear function of w0, there is, in fact, a scale invariance in the problem from

which it can be shown that the same � works for all levels of w0.

It turns out that the optimal withdrawal strategy t amounts to withdrawing at an

arbitrary large rate whenWt lies above some value L(At), and to withdraw at the contracted

rate G when Wt � L(At). It should be emphasized that this optimal withdrawal strategy is
not necessarily optimal from the point of maximizing the investor�s expected utility - rather

it is optimal in in�icting harm on the issuer of the policy. It is the worst-case scenario from

the point of view of the hedger. Again, the capital-markets cost is the price of eliminating

all possibility of shortfall. If one is willing to accept some positive shortfall probability or to

make modelling assumptions about sub-optimal withdrawal behaviors, the hedging cost can

be reduced.

Applying Itô�s lemma to Vt, as we did for the American option,

dVt = rVt dt+ dMt � f(t) dt (32)

dv(At;Wt) = va dAt + vw dWt +
1

2
vww dhW it (33)

= �vat dt+ (r � �)Wtvw dt+ vw�Wt d ~Bt � vwt dt+
�2W 2

t

2
vww dt:

Equating givesh
(r � �)Wtvw +

�2W 2
t

2
vww � rv

i
dt+

h
f(t)� tvw � tva

i
dt = dMt � vw�Xt d ~Bt (34)

where the RHS is a supermartingale, and a martingale under the optimal choice of . Thus
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as before,h
(r � �)wvw +

1

2
�2w2vww � rv

i
+
h
f()� vw � va

i
� 0 for every , (35)

with equality for some . Because f is piecewise-linear, there are three critical cases, namely

 = 0,  = G, and  =1. We arrive at the free boundary value problem

(r � �)wvw +
�2w2

2
vww � rv � 0 (36)

(r � �)wvw +
�2w2

2
vww � rv +G[1� vw � va] � 0 (37)

(1� �)� vw � va � 0; (38)

with equality in at least one case. Note in particular that the guarantee level � plays the

same role in the second equation as time t did in the American put option problem. The

numerical techniques used to solve the two problems are virtually identical.

4.3 Numerical Comparison of Static versus Dynamic

Table #4 provides some comparisons between the static actuarial and dynamic �nancial �fair

value�assuming the contingent deferred surrender charge of k = 1%.

Table #4 Placed Here

For example, under a g = 7% withdrawal rate and a pricing volatility of � = 20%; the

numerical solution to the system of PDEs in equations (36) to (38) leads to an insurance

fee of 160 basis points of assets per annum. This can be compared to the 73 basis points

required under the static actuarial case. When volatility is increased to � = 30%, the

required insurance fee jumps to 565 basis points of assets. We remind the reader that these

numbers are derived under the assumption that � = 1% and that the insurance company can

recover a portion of the hedging cost when the product is lapsed or surrendered by imposing

the 1% penalty. In practice, if the risk management division within the insurance company

can not �use�or gain access to the 1% fee, the required � insurance fee would be even higher.

5 CONCLUSION

In this paper we develop two extreme approaches to analyzing a novel type of derivative se-

curity, called a Guaranteed Minimum Withdrawal Bene�t (GMWB), which is an insurance
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rider o¤ered on Variable Annuity (VA) policies. VA policies are a close cousin to mutual

funds, but o¤er additional peformance-based guarantees. First, we take a static actuarial

approach that assumes individual investors behave passively in utilizing the embedded guar-

antee. In this case, we show how the product can be bifurcated into a type of Quanto Asian

Put (QAP) plus a generic term-certain annuity. At the other extreme, and in contrast to a

static actuarial approach, we assume that investors are fully rational and seek to maximize

the embedded option value by lapsing (a.k.a. surrendering or terminating) the product at

the optimal time, i.e. once the expected present value of fees exceed the present value of

bene�ts. We label this the dynamic �nancial approach, which leads to an optimal stopping

problem akin to pricing an American put option, albeit complicated by the non-traditional

payment structure. Our contribution lies in (i) bifurcating the product into its respective

(simpler) derivative components, (ii) managing the non-traditional payment scheme, which

is ia basis points of assets versus up-front payments, and (iii) introducing the distinction be-

tween two extreme valuation approaches, and (iv) discussing the optimal policy in this case.

In other words, the less �rational�the insurance company believes its target market is, the

less they have to charge for the guarantee. This is quite di¤erent from pricing an America

option freely traded in the open market, where the seller of protection can not a¤ord the

luxury of assuming less than full rationality on the part of the buyer.

In fact, the VA market in the U.S. �which is a $1 trillion dollar industry according

to Morningstar Inc. �has not had anywhere near the intense level of �nancial economic

analysis and scrutiny compared to the mutual fund industry. And while some might argue

that the analysis of VAs should be left to the insurance literature, we disagree, since many

of the issues raise subtle foundations of derivative pricing. In fact, this market provides a

robust laboratory for testing theories of incomplete markets and frictions, given the restricted

nature of these products.

On a practical side, our numerical results indicate that the current practice of charging

between 30 to 50 basis points of assets on an ongoing basis for a typical 7% GMWB is not

su¢ cient to cover the capital market hedging (No Arbitrage) cost of the guarantee, assuming

a 20% pricing volatility. This is regardless of whether we take a static actuarial or dynamic

�nancial approach to the problem. In fact, given the long-dated nature of the embedded

options, it is quite likely that the pricing (implied) volatility would be even higher, if the

company chose to use the capital markets to o¤set its risk. This under-pricing result stands

in contrast to earlier work by Milevsky and Posner (2001) in which they show that the
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standard rider available on VA policies �the return of premium guarantee �is worth less

than 5 to basis points of assets, compared to the observed fee of more than 100 basis points.

We o¤er a number of justi�cations at to why insurance companies might be pricing the

GMWB rider at lower than what we perceive to be the fair capital markets cost.

1. The insurance company assumes a high level of irrational lapsation and possible mor-

tality that would somehow further reduce the required fee, as we described in section

3.1

2. The GMWB rider/feature is being subsidized by the standard insurance fee. This is

consistent with the over-pricing of standard features in VA policies.

3. The company uses a reserving methodology to manage the risk that di¤ers from the

capital market perspective. In other words, the do not hedge the risk using options,

but simply compute a premium based on a real-world probability of less, as per our

discussion is section 2.1

Of course, neither of these three explanation will protect the company in the event a

secondary market develops for these products and consumer rationality increases to the

point where they exercise their options at the optimal time. In sum, future research will

continue to examine an appropriate and realistic hedging strategy for GMWB �and other

more recent innovations on the border of life insurance and �nancial markets �in the presence

of the usual collection of market imperfections.
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6 TECHNICAL APPENDIX

Pricing the Quanto and Computing the Ruin Probability.

Our model requires a quick and robust method of computing two important quantities

for which there are no analytic solutions. They are:

A(w; t) := E[WtjWt > 0;W0 = w]; P (w; t) := Pr[Wt � 0jW0 = w]; (39)

when Wt obeys the following stochastic di¤erential equation (SDE):

dWt = (�Wt � 1) dt+ �Wt dBt; W0 = w; (40)

where �, � are the drift and di¤usion coe¢ cients and Bt is the Brownian motion driving the

process. We refer the interested reader to the paper by Huang, Milevsky andWang (2004) for

extensive details and a comparison of alternative methods. Here we simply provide a high-

level sketch of the algorithm. To start, P (w; t) in equation (39) satis�es the Kolmogorov

backward equation.

Pt + (�w � 1)Pw +
1

2
�2w2Pww = 0 (41)

with a terminal condition

P (wT ; T ) = 1�H(wT � y) (42)

where H(w) is the Heaviside function and wT is the wealth at T . This is a second order

linear partial di¤erential equation which we can numerically solve by a �-method which can

be written as follows:

P
(n+1)
j � P (n)j

�t
+ (�wj � 1)

 
�
P
(n+1)
j� � P (n+1)j��1

�w
+ (1� �)

P
(n)
j� � P (n)j��1

�w

!

+
�2w2j
2

 
�
P
(n+1)
j+1 + P

(n+1)
j�1 � 2P (n+1)j

�w2
+ (1� �)

P
(n)
j+1 + P

(n)
j�1 � 2P

(n)
j

�w2

!
= 0; (43)

where P (n)j is a grid function which approximates P (w; t) on the grid points (wj, tn). A

uniform grid with equal spacing �t and �x is used in our algorithm. The parameter � can be

arbitrarily selected, but when � = 1=2 it corresponds to the well-known second order Crank-

Nickolson scheme. An upwind scheme is used for the �rst order derivative Pw, where the

variable j� is either j or j+1, depending on the sign of the coe¢ cient. For any implicit method

where 0 < � � 1, numerical boundary conditions must be provided on the computational

boundaries j = 0 and j = J: This can be derived as:

P n0 = 1; j = 0 and P nJ = 0; j = J: (44)
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The case j = 0 and j = J correspond to the w0 = 0 and wJ = W which are the boundaries

of the truncated computation domain for calculating the probability Wt is less than some

value at a �xed time. Likewise, for calculating the probability Wt is less than some value at

any time, we use j = 0 and j = J with respect to the w0 = y and wJ = W: These are the

boundaries of the truncated computation domain. The terminal condition is:

PNj = 1�H(wj � y): (45)

With these boundary conditions and the terminal conditions the discrete equations can be

solved by matching from time tn to tn+1, starting from n = 0. At tn+1, the equations for

P
(n+1)
j can be arranged from equation (43). In this space, we can solve for all the probabilities

by iteration. For the expected value, which is A(w; t) in equation (39), we can apply the

same method.
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TABLE #1: Numerical Example

Time Investment Balance SWiP GMWB

Period Return E.O.Q

0.25 -12.24% $87.76 $1.75 $1.75

0.5 10.06% $94.66 $1.75 $1.75

0.75 -6.43% $86.94 $1.75 $1.75

1 -26.40% $62.70 $1.75 $1.75

1.25 -17.30% $50.41 $1.75 $1.75

1.5 -14.22% $41.74 $1.75 $1.75

1.75 -7.05% $37.17 $1.75 $1.75

2 -7.42% $32.79 $1.75 $1.75

2.25 6.95% $33.19 $1.75 $1.75

2.5 5.76% $33.25 $1.75 $1.75

2.75 5.79% $33.33 $1.75 $1.75

3 -1.68% $31.05 $1.75 $1.75

3.25 3.13% $28.38 $1.75 $1.75

3.5 16.57% $22.22 $1.75 $1.75

3.75 -15.73% $17.25 $1.75 $1.75

4 3.47% $16.04 $1.75 $1.75

4.25 14.40% $16.35 $1.75 $1.75

4.5 14.02% $16.64 $1.75 $1.75

4.75 4.56% $15.57 $1.75 $1.75

5 8.67% $15.02 $1.75 $1.75

5.25 -9.40% $12.02 $1.75 $1.75

5.5 0.70% $10.34 $1.75 $1.75

5.75 -4.59% $8.20 $1.75 $1.75
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TABLE 1 continued.

Time Investment Balance SWiP GMWB

Period Return E.O.Q

6 5.77% $6.82 $1.75 $1.75

6.25 1.75% $5.16 $1.75 $1.75

6.50 0.05% $3.41 $1.75 $1.75

6.75 16.15% $1.93 $1.75 $1.75

7 -6.83% $0.17 $0.17 $1.75

7.25 14.98% - - $1.75

7.50 0.33% - - $1.75

7.75 -4.33% - - $1.75

8 -1.22% - - $1.75

8.25 -3.88% - - $1.75

8.50 23.84% - - $1.75

8.75 3.70% - - $1.75

9 2.36% - - $1.75

9.25 -18.28% - - $1.75

9.50 3.68% - - $1.75

9.75 8.31% - - $1.75

10 -1.54% - - $1.75

10.25 18.62% - - $1.75

10.5 -15.57% - - $1.75

10.75 -9.92 - - $1.75

11 10.66 - - $1.75

11.25 -1.58 - - $1.75

11.5 -17.23 - - $1.75

11.75 -1.05 - - $1.75

12 13.94 - - $1.75

12.25 -5.09 - - $1.75
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Table 1 continued

Time Investment Balance SWiP GMWB

Period Return E.O.Q

12.5 1.51% - - $1.75

12.75 -4.33% - - $1.75

13 12.06% - - $1.75

13.25 19.85% - - $1.75

13.50 4.76% - - $1.75

13.75 -13.18% - - $1.75

14 5.43% - - $1.75

14.25 -9.83% - - $1.75

Hypothetical return, cash�ow and end-of-quarter account balance comparing a regular

systematic withdrawal plan (SWiP) against the payo¤ from a Guaranteed Minimum With-

drawal Bene�t (GMWB).
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TABLE #2

SWiP Probability of Ruin within 14.28 years

40bp Insurance fee with net investment return (�) and volatility (�)

� = 4% � = 6% � = 8% � = 10% � = 12%

� = 10% 19.0% 7.0% 1.7% 0.3% 0.04%

� = 15% 31.4% 18.5% 9.3% 4.1% 1.6%

� = 18% 37.8% 25.5% 15.5% 8.6% 4.4%

� = 25% 49.9% 39.6% 30.5% 22.2% 15.5%

In absence of an explicit GMWB, the process of withdrawing $7 (per annum) for each $100

of original principal �which is sometime called a Systematic Withdrawal Plan �might drive

the portfolio to �ruin�within 14.28 year, the time over which the $7 would be recuperated.

The above table computes the probability this event would occur under a variety of (real

world) drift and volatility assumptions. See appendix for algorithm used to compute ruin

probabilities.
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TABLE #3: The Impact of the GMWB Rate and the

Volatility of the Sub-account on the Required Fee

Guarantee Maturity (yrs) Investment Volatility

Rate T = 1/g � = 20% �= 30%

4% 25.00 23 60

5% 20.00 37 90

6% 16.67 54 123

7% 14.29 73 158

8% 12.50 94 194

9% 11.11 117 232

10% 10.00 140 271

15% 6.67 272 475

Table assumes a 5% pricing interest rate. The table displays the required insurance fee to

hedge the GMWB assuming everyone holds the product to maturity (i.e. the static actuarial

analysis). The maturity of the Quanto Asian Put (QAP) is the inverse of the guarantee

withdrawal rate since that is the time at which the original principal has been recovered
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TABLE #4: Static (actuarial) vs. Dynamic (�nancial)

Volatility Static Dynamic (DSC = 1%)

� �* �*

15% 40 tk

18% 59 tk

20% 73 160

25% 113 320

30% 158 565

Assumes: 7% guaranteed withdrawal rate and 5% (pricing) interest rate. The expected

(Q-measure) value of the account at maturity is 58.29% of the initial investment. The

discounted expected (i.e. option) value is 28.53% of the initial investment. Under the static

actuarial case, 28.53% of premium is used to purchase the Quanto Asian Put, while the

remaining 71.47% should go towards buying a term-certain annuity paying $7-per-$100 for

a period of 14.28 years. The purpose of this comparison is to note the higher required fees if

we assume the individual will lapse the product if the option is no longer worth paying for

(dynamic) versus if the investor holds the product to maturity (static).
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Figure #1: Example of Policy Value 
under 7% withdrawal and Investment Returns

$-

$20

$40

$60

$80

$100

$120

0.3 1.3 2.3 3.3 4.3 5.3 6.3 7.3 8.3 9.3 10.3 11.3 12.3 13.3 14.3

Time Period

Po
lic

y 
Va

lu
e

-30.0%

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

In
ve

st
m

en
t R

et
ur

ns

….Option Payoff….



Figure #2: Example of Policy Value 
under 7% withdrawal and Investment Returns
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Figure #3: Example of Policy Value 
under 7% withdrawal and Investment Returns
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